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ABSTRACT 

An inventory of rented equipment is studied.  Equipment is with- 
drawn from the inventory by customers who use it for a length of 
time and then return it.  Decisions about the amount of equipment 
to rent can be made at certain points in time. This paper des- 
cribes a policy for making these decisions which minimizes ex- 
pected costs. 

A dynamic programming model is formulated to describe the problem. 
The model is different than the usual ones considered in the lit- 
erature in three respects.  First, the equipment which is with- 
drawn from the inventory is not consumed; it is only used for a 
certain length of time then it returns to the Inventory.  The 
amount of equipment in the inventory, consequently, can fluctuate 
up or down.  Second, all the equipment in the inventory is rented. 
Thus, when a decision is made about how much equipment is needed, 
either more or less than currently is on hand can be rented. 
Third, convexity of the cost function is not important because 
simple optimal policies can be found when the cost function is 
nonconvex. 

The exact form of the optimal policy depends on the specific 
assumptions made, however, all of the optimal policies have the 
following generic structure. At the time a decision is to be 
made two numbers t and u , with t < u , can be computed. If 
the amount of equipment currently on hand is greater than u 
(less than  t) then it is optimal to rent u (t) .  If the amount 
of equipment is in between t and u then, assuming convexity, 
it is optimal to continue renting the same quantity or, assuming 
nonconvexity, no general statement can be made about what to do 
because for each number rented in between t and u there may 
be a different optimal number to rent. 
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1.    Introduction 

1.1 Inventory Problems 

An inventory is a stock of physical goods which is held or stored for use at a 

later time.  Inventory problems deal with deciding what quantity of goods should be 

stocked in anticipation of a future demand. The usual Inventory problems studied 

in the literature deal with the determination of how many goods should be purchased 

and when they should be purchased; for example see Dvoretzky, Kiefer, and Wolfowitz 

11], Arrow, Karlin, and Scarf [2], and Hadley and Whiten [3]. A problem exists 

because the demand for the commodity being stocked is not known with certainty; 

only a probability distribution is assumed to be known.  If all of the demands 

cannot be satisfied a loss (cost) is incurred. On the other hand, a loss (cost) 

also occurs if more goods are stocked then are demanded.  An optimal solution to 

the problem is a policy f.ov  the operation of the inventory system which minimizes 

the sum of these two losses and strikes a balance between over stocking and under 

stocking goods. 

1.2 The Inventory Problem for Rented Equipment 

The usual inventory problems in the literature implicitly utilize two as- 

sumptions.  First, when the commodity in stock is demanded it is consumed.  Sec- 

ond, the commodities are owned by the management of the inventory system. This 

paper studies an inventory problem in which neither assumption is valid. When a 

commodity is demanded it will be assumed to be used for a length of time and then 

returned in good condition to the inventory for possible use in the future.  In 

addition the commodities in the inventory will be assumed to be rented or leased 

so that periodically a rental or le^se fee must be paid.  The latter assumption 

allows the operation of the inventory system to be very flexible because the num- 

ber of units stored can be decreased in addition to the usual alternative of in- 



creasing the number of units. 

For example,  the problem of storing spare parts  for machines can be viewed as 

an inventory problem.    When a machine breaks down a spare part is withdrawn from 

the Inventory and used.    Techniques are available in the  literature to solve this 

type of  inventory problem.    The problem of an organization which rents or  leases a 

group or pool of cars for the intermittent use of a large number of their employees 

does not  satisfy the two implicit    assumptions mentioned previously.    Problems 

similar to this latter type will be called inventory problems for rented equipment 

and are the subject of this paper.     Several related problems have been studied by 

Kirby  [A], Mico  [5], Phelphs  [6],  Fukuda [7], Tainiter  [21], and lelehart  and 

Karlin  [22]. 

1.3    Historical Origin 

The  inventory problem for rented equipment originally arose when the question 

of pooling the aircraft used in fire  fighting was  investigated by the United States 

Forest Service.    Aircraft are used to carry personnel  to fire areas,  to drop smoke 

jumpers  in a region,  to drop borate bombs or other chemicals on the fires,  etc. 

An alternative  to having aircraft scattered throughout a region is to group or pool 

all aircraft  at a central  location.    Aircraft can be dispatched to an area if a fire 

occurs.     Then they are returned to the pool when the  fire  is extinguished. 

When and where a forest  fire will occur is not known with certainty.     In ad- 

dition,   there  is a seasonal variation in fires; most  fires occur during dry summer 

seasons  and only a few occur in the wet winter season.    An uneconomical  solution 

would be  for  the Forest Service  to own enough aircraft to handle the peak number of 

fires because many of the aircraft would remain idle  a large part of the  time.    An 

alternative  to ownership is the renting or leasing of  the  aircraft.    Periodically, 

say once a week, once a month,   or at the beginning and end of a fire season,  a de- 

cision could  be made concerning  the number of aircraft  that would be rented  in the 



ensuing period.  In this manner the number of aircraft could be adjusted, either 

up or down, much more easily than if the aircraft were owned. 

In this study it is assumed that all the goods in the inventory are rented.  It 

is quite possible that an organization may already possess a certain number of units 

and the question may be to decide how many additional units are to be rented 

during peak seasons.  Or it may turn out that there is an optimal number of units 

to be owned with the rental of additional units occurring during peak seasons. 

Questions such as these which are concerned with the quantity of goods to own in 

addition to the number to rent are not considered in this paper. 

1.4 An Inventory Model for Rented Equipment 

In this section we describe a model of the inventory system discussed in the 

previous section.  Our model can be viewed as an abstract representation of the 

real inventory system.  It is used primarily for the purposes of prediction and 

control. The chief function of the model is to explain the operation of the in- 

ventory system rather than just providing a description [8]. 

At this stage we will be content with just describing our model verbally. 

Chapter 2 will extend this discussion by formulating the mathematical model, i.e., 

the mathematical equations which describe the inventory system. 

Before proceeding some terminology which will be used throughout the paper 

will be discussed.  The goods in the inventory will be called equipment and the lo- 

cation of the goods when they are not being used will be called the pool. The en- 

tity which gives rise to a demand will be called a customer.  When a demand occurs 

a unit of equipment leaves the pool and is used by the customer for a certain length 

of time. The equipment is said to be in the field when it is in use. Thus, de- 

mands for the equipment originate from customers in the field and equipment goes 

from the pool to the field to satisfy the demands. The length of time for which 

equipment is rented will be called the time period or the period. 



The  inventory model   for  rented equipment  can be described as  follows.     At a 

specific  location there  is a pool of rented equipment.    The amount of equipment in 

the pool can be changed only at  specific points  in time,  i.e.,  at  the beginning of 

any time period.     For clarity the periods are numbered    1,2,3,...     in some 

manner.     The amounts of  equipment rented at  the beginning of a period,  before and 

after a decision is made  about  the quantity to rent during the period,  are denoted 

by    x      and    y    ,  respectively, where    n    refers to the number of  the period.    Gen- 

erally,   let the integer valued,  continuous parameter stochastic process 

{z(t)   ,   t  > 0}    denote  the number of units  of  equipment in use in the  field at time 

t   ;   specifically,  let  the  integer valued, discrete parameter stochastic process 

{z     ,n!sl,2,...}     denote the number in use at the beginning of period    n  . 

Subscripts and arguments will be suppressed when no confusion will arise.     For 

example,   consider a fixed period,  say the    n       .     At  the beginning of  the period 

z       units of equipment are  in use and    x    -  z       are  in the pool.    A decision is made n n    r n        n r 

to rent    y      units during the period.     If    y       is  larger than    x       then    y    - x 'n or Jn a n ^n        n 

additional units are rented.     If    y      is les^  than    x      then    x    - y      units are Jn n n      •'n 

returned to the renter of  the equipment.    During the period  the new number of units 

rented    y      remains constant but the number of units  in use    z(t)     changes with 

time as new demands occur and as units  in the field are returned to  the pool.    We 

note  that the variables    x     ,  y    ,  and    z       are either zero or a positive  integer. 
n  7n      n 0 

We assume when equipment is in use in the field it cannot be returned to the 

renter; only equipment in the pool is eligible to be returned.  Thus, y  can 

never be less than z(t) , for all t in the n   period. Also, we assume 

when a demand occurs and all the equipment is already in use that the customer 

either goes somewhere else and has his demand satisfied (at a higher cost) or goes 

away with his demand unfulfilled and does not return. Third, we assume that when 



equipment  is returned to the pool from the field it is in the same physical  con- 

dition as unused equipment.    All the equipment in the pool can be considered  i- 

dentical,  regardless of how many times it has been used. 

Figure 1.1   illustrates how the number of rented units and the number of units 

in use might vary during several periods. 

number 
of units 

Xl 

demands occurring 
during this time 
are lost—j 

number of units 
in pool 

number of units 
rented 

number of units 
in use 

■+■ time 

The Variation of  the Amount of Equipment 
Rented and the Amount in Use During 

Several Periods. 

Figure 1.1 

During the operation of the inventory system the following sequence of events 

occurs.  Suppose the current period is numbered 1, the next period 2, the next 3, 

etc.  (We emphasize that other numberings of the periods are possible.  This num- 

bering method has been chosen for convenience. Later on it will be more convenient 

to number the periods backwards, see Section 3.1.)  At the beginning of the first 

period (time ■ 0) there are x.  units of equipment being rented. There are 

z(0) ■ z.  units in use. At this time we decide to change vhe number of rented 

units to y1 . The new number of rented units y1 may be larger or smaller than 

x1 but it never can be less than z.   . Then during period one the number of units 

rented y1  remains the same but the number of units in use changes. After a decision 

is made at the beginning of the period the number of units that will be in use at 



some time t during the period,  z(t) , is not known with certainty; only its 

probability distribution is known. At the beginning of period two a decision is 

made to change the number of leased units from y1  to another new level y„ . 

The sequence of events is repeated during the remainder of the seond period, 

during period three, ad infinitum. 

1.5 The Costs 

To be able to decide how one method of operating the inventory system compares 

with another we must have a criterion. We assume the criterion is the minimization 

of cost, or if uncertainity is involved, expected cost. That method of operation, 

called a policy, which costs less or has a smaller expected cost than any other is 

the best method or the optimal policy. 

First we discuss the costs associated with the obtaining or returning of e- 

quipment and the rental costs. At the beginning of every period a decision is made 

to either (1) continue renting the same number of units; or (2) to Increase the num- 

ber rented; or (3) to decrease the number rented for the next period. Making de- 

cision (1) incurs a cost of c • x where x is the number of items being rented 

or leased.  The cost  c is interpreted as the rental cost, or lease cost, per u- 

nit for the time period.  If decision (2) is made a cost of k • (y - x) + c • y 

is incurred, where y - x is the additional number of units rented and where 

k > 0 . The proportionality factor k can be interpreted as an order cost; it is 

the additional cost required if the items rented during a period were not rented 

in the preceeding perioc.  When decision (3) is made a cost of d • (y - x) + c • y 

is incurred, with d < 0 . The proportionality constant  (-d)  leptasents a return 

cost. Note that since y - x < 0 , d • (y - x)  is always non-negative and thus is 

really a cost.  Included in the order and return costs are the costs of processing 

the paperwork for the order or return, any modification costs, and the transpor- 



tation costs  incurred in bringing the equipment  to  the pool or in returning  it to 

the renter.     In general  the  order or return cost may contain a fixed "set  up" cost 

as a component in addition to  the component proportional to the number ordered or 

returned.     This possibility  is not considered in this paper. 

Second we discuss,  briefly,   the holding costs;   the costs associated with 

holding  the inventory.     Complete discussions are given in the  literature by Hadley 

and Whiten [3],  Siegal   [9],   and Whiten [10],    Costs  included under this heading are 

out-of-pocket costs  such as  the operating expenses of a warehouse  in which the e- 

quipment  is stored  (heat,   light,  night watchmen),   Insurance,  taxes,  etc.     An im- 

portant  cost which is always  included as a component of the holding cost  in the u- 

sual  inventory models  is  the cost of the  capital  tied up in the inventory.     In the 

model we are considering the entire inventory is rented so «"here  is no capital in- 

vested in the inventory.     Therefore,  the cost of  capital is not  included  in the 

holding cost.    The holding cost will be assumed to be proportional  to the number 

of units  in the pool  and  to the  length of time each unit is held in the pool. 

Third, we mention,  also briefly,  the shortage costs;  the costs associated with 

a demand occurring when all of  the equipment  is  in ust in the field.    A thorough 

discussion is given in the  literature by Hadley and Whiten [3]  and Whiten  [10].    If 

we  suppose that when demands  cannot be satisfied the customer goes away unsatisfied 

then the shortage cost -  i.e., the cost of  losing the customer - is often difficult 

to measure;  still it is a very real cost.    As an example,  if the inventory pool 

contains aircraft used  for fighting forest fires  then the shortage cost  can be i- 

dentified as the cost of  the  loss due to the fire.    When demands cannot be satis- 

fied at  the pool if  the customer can fulfill his demand elsewhere then the addition- 

al cost of doing this  is  the  shortage cost.     Consider the example of  the pool of 

aircraft again.    It  is possible that when the pool  is empty and a demand occurs the 



customer may go directly to the renter (or to another supplier) to obtain the air- 

craft.  The additional cost of doing this can be interpreted as a shorage cost.  In 

any case we will say that the demands which occur when no equipment is in the pool 

are lost.  The shortage cost is assumed proportional to the number of lost customers 

only.  Assuming a shortage cost proportional to time has no meaning because custo- 

mers do not wait; they are lost immediately and never return again. 

When making a decision at the beginning of a period the number of units in the 

pool at any time  t during the period, the length of time a unit Is in the pool, 

and the number of lost customers up to  t are not known precisely. Thus the ex- 

pected values of holding and shortage costs are the relevant quantities to be con- 

sidered.  The expected holding and shortage cost for one period is assumed to be a 

function of the amount of equipment rented during a period,  y , and the number of 

units in use at the beginning of the period,  z .  It will be denoted by L (y) . 

A word must be said about extra costs which are incurred when the equipment 

is in use in the field, e.g., operating costs. We assume that the management of the 

pool has no authority and no Influence over the customers who demand the equipment. 

The occurrence of demands is a phenomenon independent of the operation of the in- 

ventory system.  Under this assumption operating costs are irrelevant to the man- 

agers of the invenLory system and not included in the model.  However, in the case 

of the Forest Service problem, to the decision maker who has to determine the num- 

ber of aircraft to use in fighting a forest fire costs such as operating costs are 

relevant and must be considered. 

Summing all of the costs mentioned in this section we obtain the total expected 

cost incurred during a period.  (1)  If the same amount of equipment is rented as 

in the previous period the total expected cost is ex + L (x) .  (2)  If the number 

rented is increased the total expected cost is k(y - x) + cy + L (y).  (3)  If the 



number rented is decreased the total expected  cost is    d(y - x) + cy + L (y)   . 

1.6    Relation with Queueing Theory 

An unusual aspect of this inventory problem is that there are two sources from 

which the inventory pool  obtains equipment.     At the beginning of a period additional 

equipment can be acquired,  as in the usual  inventory models.    However,  during a 

period equipment also becomes available as  soon as it returns from the field.    Be- 

cause of the return of equipment,  in addition to withdrawals,   the inventory level 

in the pool can fluctuate up or down. 

The problem we have been discussing up  to this point,  using  inventory ter- 

minology,  can be identified with the telephone trunking problem of queueing theory. 

Suppose    y    units of equipment are in the inventory pool.    From the queueing point 

of view they may be considered as    y    parallel service channels  in a service center. 

The demands which occur  for the equipment can be interpreted as customers arriving 

at  the service center.     If there is a unit of equipment in the pool when a demand 

occurs then the equipment is sent to the field for a length of time which is a ran- 

com varaible.    Any other demand can only be  satisfied by some other piece of equip- 

ment whiih is in the pool.    This corresponds,  from the queueing viewpoint,  to an 

arriving customer going  into an available  service channel;  the  service time of the 

customer being identical with the length of   time a piece of equipment is in use in 

the field.    When a piece of equipment is  through being used in the field it is re- 

turned to the pool.     This corresponds to a customer completing his  service and a 

service channel becoming available again.     Since demands which occur when no equip- 

ment is in the pool  are  lost the queueing problem is a    y    channel  telephone trunking 

model.    We have a one  to one correspondence between the stochastic behavior of the 

Inventory model for rented equipment and the  telephone trunking model. 

By using the analogy between the stochastic behavior of the  inventory level 

and queueing theory we  can think of other versions of the rental  inventory model. 
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As an example,  consider    y    parallel service channels  in a service center,  as before. 

Only this  time suppose customers who arrive when all channels are busy wait until 

enuipment becomes available.     The corresponding  inventory problem is  identical with 

: ,v  discussed in the preceding sections except   that  the customers who arrive 

when no  inventory is in the pool wait until some becomes available.     In  inventory 

terminology we say that backlogging  is or is not  allowed depending on whether  the 

customer waits or does not wait.     Other possible versions of the rental  inventory 

problem are:     (1)  customers are allowed to wait  but  an upper limit on the number 

waiting exists so that all  subsequent demands are  lost;   (2)  some customers who 

arrive wait and some do not wait;   (3)  priorities exist among the customers so that 

first  preference for equipment   is  given to high priority customers.     Clearly,   for 

each one of  the inventory problems there is a corresponding queueing model.     This 

paper  investigates only the  lost customer or no backlogging case.    The main reason 

is that  the expressions obtained  from queueing theory which describe  the  stochastic 

behavior  of  the inventory  level are simpler than  in  any of the other cases. 

1. 7    Summary of Results 

The results of this paper  show that  there  is an optimal method of operating 

the  inventory system described  in the preceding  sections.     The exact  form of the 

optimal policy depends on the  assumptions made about  the  stochastic process 

{z(t)   ,   t  >  0}   , which represents the amount of  equipment  in use at  time     t   . 

However,  generally speaking,   all  the optimal policies have the following  structure. 

At  the beginning of each period  two real numbers can be computed.    Tliey are called 

the upper and lower critical numbers;  the former always being larger than the latter. 

If the  quantity of equipment  rented at the beginning of a period  is  larger than the 

upper critical number then too much equipment  is currently on hand.     The optimal 

amount  of equipment to rent   for the ensuing period  is the upper critical number. 
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If the quantity of equipment rented at the beginning of the period is smaller than 

the lower critical number then too little equipment currently is on hand. The 

optimal amount to rent for the ensuing period is the lower critical number.  When- 

ever the amount of equipment at the beginning of the period is in between the upper 

and lower critical numbers then in general it is not known whether too much or too 

little equipment is on hand.  In this last case the optimal policy may call for 

either:  (1) the renting of additional equipment, (2) the return of equipment, or 

(3) no action, i.e., continuing to rent the same number. 

The various assumptions considered in this paper give rise to four variations 

of the generic optimal policy described above. The four cases considered are the 

various combinations of the assumptions concerning the dependence or independence 

of the relevant expected total cost function and the amount of equipment in use at 

the beginning of the period and whether or not this cost function is convex or non- 

convex. The importance of the independence and dependence cases stems from the 

following facts. When the stochastic process {z(t) , t > 0}  is stationary then 

thf relevant total cost function is Independent of the quantity of equipment in use 

at the beginning of the period; however, when stationarity is not assumed then the 

total cost function does depend on the quantity of equipment in use at the beginning 

of the period.  The simplest situation assumes independence and convexity.  In this 

case the optimal policy described above is simplified because there is exactly one 

pair of critical numbers and when the quantity of equipment rented is in between 

these numbers at the beginning of the period the optimal policy is to continue 

renting the same number. When the convexity assumption is dropped the only change 

in the optimal policy occurs when the amount of rented equipment is in between the 

upper and lower critical numbers.  In this case no general statements can be made 

about what to do; for each number rented at the beginning of the period which is in 

between the critical numbers there may be a different optimal number to rent during 
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the ensuing period.     When assuming convexity but not necessarily independence  it 

is  shown that  there  exists a sequence of pairs of critical numbers.     There is one 

pair of critical numbers for each possible  amount of equipment  in use at  the 

beginning of  the period.    Again in this case  it  is  shown that when  the amount of 

rented equipment at  the beginning of a period  is  in between the upper and  lower 

critical numbers the optimal policy is  to continue renting the  same number.    Final- 

ly,  when the convexity assumption is dropped   the only change  in the  optimal  policy 

is when the amount of  equipment  is  in between the upper and  lower critical numbers. 

As  in tV^ previous nonconvex case no general   statements can be made  about what  to 

do  in this  situation.     For each number rented which is in between  the critical num- 

bers there may be a different optimal number  to rent during  the  ensuing period. 

The usual  inventory models considered  in the literature give optimal policies 

only under strict conditions  such as convexity.     For the rental   inventory model 

convexity is not as  important because simple  optimal policies can be  found when the 

relevant expected total  cost  functions are nonconvex.    However,  when convexity Is 

assumed the optimal policies have a simpler form. 

Finally,  examples  are given which show that  In both the cases  of  stationary 

and nonstationary    {z(t)   ,   t  >  0}    convex and  nonconvex cost  functions are obtained 

under certain conditions. 
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2. The One Period Model 

2.1 Introduction 

In this chapter the inventory model for rented equipment, described verbally 

in Chapter 1, will be presented more precisely. The mathematical model for a one 

period problem will be formulated, described, and solved.  Then we discuss a special 

case in which the occurrence of demands for equipment follows a Poisson process. 

2.2 The Mathematical Model 

When dealing with a one period model we must consider what happens to thp 

rented equipment at the end of the period. We will suppose that all the equipment 

is returned to the renter. The cost to return a unit of equipment, in general, will 

be different if it is in use than if it is in the pool.  However, in what follows 

we make the assumption that the cost of returning each unit is the same so that the 

cost can be considered as a component of the rental cost c . Chapter 6 considers 

the more general case. 

Let C. (x , z)  be the minimum expected cost incurred during one period if x 

and z ari  the initial numbers of equipment rented and in use, respectively, at the 

beginning of the period (i.e., before a decision is made to rent y units for the 

ensuing period).  We note that this function is only defined for x > z since the 

amount of equipment in use can never be larger than the amount rented. Combining 

the order and return costs mentioned in Section 1.5 let 

!k • (y - x)        if y > x 

(2.1) 

d * (y - x)        if y < x 

where k is the unit order cost and (-d) > 0 is the unit return cost.  Similar- 

ly, following the notation of Section 1.5 again we denote the rental cost by c • y 
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and the one period expected holding and shortage cost by L (y) where y is the 

amount of equipment rented during the period. The total expected cost incurred 

during one period is 

a(y - x) + cy + L (y) (2.2) 

The following assumptions are made, in addition to those listed in Section 1.4: 

(1) L (y) > 0 and is a function of the amount of equipment rented 
during the period, y , only; i.e., L (y) » L(y). 

(2) A2L(y) > 0 for y » 0 , 1 , 2 , . . .  where A is the usual 
difference (forward) operator. 

(3) k>0,d<0,c>0,and k+c>0. 

The motivation for the second part of assumption (1), i.e., L (y) ■ L(y) , is 

that this case of independence naturally arises when the stochastic process 

{2(t) , t > 0} is assumed stationary. 

We want to find that value of y for which (2.2) is the smallest, thus 

C1(x . z) - min {a(y - x) + cy + L(y)}. (2.3) 
y>z 

The minimum exists by virtue of the fact that a(y - x) + cy + L(y) -♦■ <» as y -*■ «> . 

The variables x , y , and z take nonegative integral values only since each rep- 

resents a certain quantity of equipment. 

When a real valued function has nonnegative second differences we will say 

that it is discrete convex.  Consequently, assumptions (1) and (2) state that the one 

period expected holding and shortage cost is a nonnegative, discrete, convex func- 

tion which does iot depend on the initial amount of equipment in use. The third 

assumption says that the order and return cost function a(y - x) and the unit 

rental cost  c are nonnegative, i.e., they are true costs.  Chapter 5 considers 

a more general rental inventory model where the one period expected holding and 



(2.4) 

shortage cost L (y)  does not have a special structure.  That is, it may depend on 

the initial amount in use,  z , and it is not necessarily discrete convex. 

Define two nonnegative real numbers  t.  and u.  by 

k(t - x) + ct + L(t ) = min  {k(y - x) + cy + L:y)} 
y>0 

d(u1 - x) + cu1 + L(u1) = inf  {d(y - x) + cy + L(y) } . 
y>0 

The minimum can be used in the first equation of (2.4) because 

k(y - x) + cy + L(y) + ^    as y -*■<*>  .     By contrast, the inftmum must be used in the 

second equation of (2.4) because d(y - x) ->• -00 as y -> -H» .  The subscript 1 will 

be suppressed whenever no confusion will arise, i.e.,  t. = t and u. = u .  For 

convenience assume t and u are unique.  Chapter 5 discussed the case when this 

is not true. 

Because L (y)  is discrete convex k + c + AL(0) > 0 if and only if t = 0 . 

Clearly k + c + AL(0) < 0 if and only if 0 < t < «> , in which case t is de- 

termined by 

k + c + AL(t -l)<0<k+c+ AL(t) . (2.5) 

Similarly,  d + c + AL(0) > 0 if and only if u = 0 . Also 

d + c + AL(y) < 0 for y ■ 0 , 1 , 2 , . . .  if and only if u « « .  Finally, 

d + c + AL(0) < 0 and d + c + AL(y) > 0 for some finite nonnegative integral y 

when and only when 0 < u < 0D , in which case u is calculated from 

d + c + AL(u -l)<0<d+c+ AL(u) . (2.6) 

The upper and lower critical numbers u and t defined in (2.6) and (2.5), 

respectively, obviously exist anJ are uniquely determined.  We will show, now, 

that t < u . 
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Theorem 2.1 

If assumptions (1), (2), and (3) hold, i.e., if L(y)  Is nonnegative, dis- 

crete convex, independent of the initial amount of equipment in use z , and if 

k > 0 , c > 0 and d < 0 then t < u . 

Proof: If 0 < t < <» and 0 < u < ~ then from (2.5) and (2.6) and by the 

hypothesis AL(u) >-d-c>-k-c> AL(t - 1) .  By discrete convexity 

AL(u) > AL(t - 1)  implies that u > t - 1 .  But t and u assume integral values 

only therefore t < u .  Clearly, the theorem is true if t = 0 and u = 0 or 

u = o" . The only other alternative t > 0 and u = 0 cannot occur because then 

k + c + AL(0) > d + c + AL(0) > 0 , a contradiction since t > 0 implies 

k + c + AL(0) < 0 . 

2.3 Solution of the One Period Model 

The solution to the one period model is presented in this section, i.e., the 

optimal policy is determined.  Initially we assume that the upper and lower crit- 

ical numbers, u and t , are calculated from (2.6) and (2.5), i.e., 

0 < t < u < » .  From these results the optimal policy can be obtained for any 

values of the critical numbers 0 < t < u < <» . 

Under the assumption in the above paragraph three cases must be distinguished: 

the initial amount of rented equipment x can be larger than u , less than t , 

or in between t and u . 

Case (1):  x > u .  Let 

h (y) = a(y - x) + cy + L(y) . (2.7) 

That is,  h (y)  is the total expected cost incurred during one period if x is 

the initial amount of rented equipment and y is the amount rented during the 

period.  From (2.3) we have 
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C (x , z) = min   {h (y)r . 
y>z 

For each fixed x , a(y - x)  is discrete convex in v  therefore so is h (v) 
x ■ 

because the sum of discrete convex functions is discrete convex.  Fix x  u . 

When  y < x 

h (y) = d(y - x) + cy + L(y) 

and when y > x 

h (y) = k(y - x) + cy + L(y) > d(y - x) + cy + L(y) . 

Thus using the definition of u , the discrete convexity of h (y) , and the fact 

that u < x  implies 

min  {h (y)} = h (u) 
y>0 

so that 

C. (x , z) = min  {h (y)} = h (max(u , z)) . 
y>z 

Pictorlally, the situation can h^ depicted as in Figure 2.1. 
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k(y - x) + cy + L(y) 

d(y - x) + cy + L(y) 

The Cost Function when x > u . 

Figure 2.1 

Clearly h (y) = max [k(y - x) + cy + L(y); d(y - x) + cy + L(y)] .  Strictly 

speaking the lines in Figure 2.1 are not continuous but they are defined only at 

nonnegative integers.  For purposes of clarity from this point on, unless otherwise 

specifically noted, all discrete valued functions will be drawn in illustrations as 

if they are continuous functions.  It is clear also from Figure 2.1 that h (y) 

attains its minimum at y = u . 

At the beginning of a period if the initial number of units of rented equip- 

ment x is larger than the upper critical number u then the optimal amount of 

equipment to rent during the ensuing period is u if u is larger than the number 

of units in use z , otherwise it is z .  In other words whenever x > u then 

y = max(u , z) .  The difference x - max(u , z)  is the number of units returned. 

Case (2):    x < t .  For a fixed x < t we have, when y < x , 

h (y) - d(y - x) + cy + L(y) > k(y - x) + cy + L(y) 

and when y > x 

hx(y) = k(y - x) + cy + L(y) . 

Using  the  definition of    t    and the discrete convexity of    h  (y)   ,   since    y > x >  z   , 
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we  conclude 

C. (x   ,   z)   = min     • h   (v)     =  h   (t) 
1 X X 

VNZ 

Pictoriallv,   the   situation   car.  bo   dcnicted   as   in   Ficnr 

k(v  -   x)   +  cv +  L(v) 

/ d(v  -   x)   +   cv +   L(v) 

H 1 h 
X     t u 

The Cost Function when x ^ t . 

Figure 2.2 

Figure 2.2 also clearly indicates that in this case  h (y) = max [k(y - x + cy + L(y) ; 

d(y - x) + cy + L(y)]  and it attains its minimum at  y = t . 

If the Initial amount of equipment being rented at the beginning of a period, 

x , is less than the lower critical number t  then the optimal policy is to rent 

t units during the coming period. The difference  t - x is the additional num- 

ber of units rented. 

Case (3):    t < x < u .  The definition of h (y)  can be rewritten as 

d(y - x) + cy + L(y) y < x 

hx(y) - 

k(y - x) + cy + L(y)      y > x 

Differencing with respect to y gives 



20 

hjy) = 

d + c + L(y)    y < x 

k + c 4- L(y)    y > x 

Equations (2.5) and (2.6) and the discrete convexity of L(y) imply 

hx(y) - 

< 0    y < x 

> 0    y > x . 

In particular we have the conditions for a minimum at x 

h (x - 1) < 0 < h (x) 
x - x 

so that,  because    x  >  z  , 

C1(x   ,   z)  » rain    {h  (y)} « h  (x)   . 
y>Z 

Pictorially,  the situation can be depicted as  in Figure  2.3. 

k(y - x)  + cy + L(y) 

iKy -  x)   + cy + L(y) 

x    u 

The Cost Function when t < x < u . 

Figure 2.3 

Figure 2.3 also clearly indicates that in this case h (y) ■ max[k(y - x) + cy + L(y); 
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d(y - x) + cy + L(y)]  and it attains its minimum at y = x . 

If the initial amount of equipment rented at the beginning of a period is in 

between the upper and lower critical numbers then the optimal policy is to rent the 

same amount during the period. 

The optimal policy has been determined whenever 0 < t < u < ^ .  Other sit- 

uations possible are:  (i) t = 0 , u = 0 ; (ii) t*0,0<u<00; (iii) t = 0 , 

u = 0° ; and  (iv) t > 0 , u = » . When (i) occurs only case (i), x > u , can 

happen therefore the optimal policy is y = max(u , z) = z .  For (ii) cases (1) , 

x > u , and O), t < x < u , can occur so that the optimal policy is y = max(u , z) 

when x > u and y=x  if  t<x<u.  If (iii)  occurs then only case (3), 

t < x < u , is possible, thus y = x is the optimal policy.  Finally, whenever (iv) 

occurs only cases (2), x < t , and (3), t < x < u , can happen therefore the op- 

timal policy is y = t  if x < t and y = x if x > t . 

Remember that when the critical numbers are calculated by (2.5) and (2.6) 

0 < t < u < «o .  This is the normal situtation.  Other situations which occur are 

not normal in the sense that t * 0 and either u = 0 or u « «^ .  The optimal 

method of operating the inventory system in the first case is to have no inventory 

while in the latter case it is never to change the inventory no matter what the 

initial level is.  Such situtations are considered degenerate. 

We make a remark about the return cost.  It seems reasonable to suppose that 

if the return cost  (-d)  is very large it might never be economical to return e- 

quipment. That it is indeed possible that there is a value of  (-d)  which is too 

large follows from (2.6).  As  (-d)  increases d decreases.  If there is a value 

of d , say dg , such that d + c + AL(y) < 0  for all nonnegative integral y 

then u = "o for all values of (-d) > (-do) .  A finite inventory level is always 

less than this value of the upper critical number, thus, equipment never is re- 

turned. 
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The next theorem shows that the one period minimum expected cost function 

C. (x , z)  is discrete convex in x > z for each z , under certain conditions, 

Theorem 2.2 

If L(y)  if discrete convex then C-(x , z)  is discrete convex for all 

x > z for each value of z . 

Proof: The optimal policy given in the above sections implies 

k(t - x) + ct + L(t) x < t 

ex + L(x) t < x < u 
C1(x , z) » 

1 d(u - x) + cu + L(u)    if  z < u ) 
>  X > u 

d(z - x) + cz + L(z)    if  z > u ) 

for x > z . It is to be understood that when z < t then x may be in any of 

the three ranges: x<t,t<x<u,or x>u. However, whenever t < z < u 

then C.(x , z) is defined only f^r t < z < x < u and x > u and when z > u 

then C-(x , z) is defined only for u < z < x . Two cases must be considered, 

z < u and z > u . 

Case (i):  z < u . In this case the expression for C. (x , z) simplifies t( 

CjCx , z) 

(k(t - x) + ct + L(t)      x < t 

.  ex + L(x) t < x < u 

\    d(u - x) + cu + L(u: l)       X > u 

for x > z .  In the regions x < t and x > u , C.(x , z)  Is "linear" (fn the 

sense that AC. (x , z) ■ constant) and in the region t < x < u it is discrete 

convex.  By the definitions of t and u 

AC.Ct - 1 , z) - -k < c + AL(t) - AC.Ct , z) 

AC (u - 1 , z) = c + AL(u - 1) < -d = AC.Cu , z) 
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so that C. (x , z)  is discrete convex in x > z for each value of  z < u . 

Case (ii):  z > u .  In this case the expression for C. (x , z) simplifies to 

C (x , z) = d(z - x) + cz + L(z) 

which is "linear" and hence discrete convex in x > z  for each  z , 

2.A The Optimal Policy 

We SiTTtiarize the optimal policy derived in the preceeding section.  If the a- 

mount of equipment being rented at the beginning of the period is x and if the 

nvinber of units In use at the beginning of the period is  z < x  then the optimal 

policy IF*. 

■1)  If x > u then y ■ max(u , z) , i.e., x - max(u , z)  units 

are returned; 

v2)  If  t < x < u then y = x , i.e., the same number is rented; 

(3)  If x < t then y = t , i.e., t - x additional units are rented; 

where t and u are the critical number determined in Section 2.2 and y is the 

quantity of equipment to be rented during the period.  It always is true that 

t < u and it usually is true that t > 0 and n < "> .    The optimal policy in- 

tuitively says that whenever the inventory is too high  (x > u)  equipment should 

be returned.  If the inventory level is too low (x < t)  then additional equipment 

should be rented.  However, because of the cost of renting additional equipment and 

the cost of returning equipment, whenever the inventory level is just about right 

(t < x < u)  no action should be taken. 

2.5 L (y):  A Stationary Approximation 

Before proceeding to the multi-period formulation of the model the structure 

of L (y) , the one period expected holding and shortage cost, is investigated.  To 
2 
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determine this cost we must know the probability law of the number of units of e- 

quipment in the pool at every time t .  Using this probability law L (y)  is 

calculated in a special case.  For this case it is shown that in fact L (y)  does 

not depend on the initial amount of equipment in use, z , and that it is nonnegative 

and discrete convex.  Thus the results of Sections 2.1 through 2.4 apply for this 

special case. At the end of this section more explicit expressions for the crit- 

ical numbers t and u are given for this case and a numerical example is pre-■ 

sented. 

Let p  (t , y)  be the required probability law, i.e., it represents the 

probability that, given z units of equipment in use at time 0 and y units 

rented during tne period,  k units are in use at time t . Recall the one to one 

correspondence between the stochastic behavior of the inventory model and the 

telephone trunking problem mentioned in Section 1.6.  The transition probabilities 

for a y channel trunking problem - i.e., the p. d. f.'s which give the prob- 

abilities that there are k channels occupied at time t given that  z  are 

occupied at time 0 - clearly are identical with p  (t , y) .  In general, given 

an arbitrary demand process and an arbitrary usage distribution the transition prob- 

abilities p , (t , y)  are very difficult to determine. When Poisson demands and 

negative exponential usage times are assumed the transition probabilities can be 

calculated (or their Laplace transforms) but the expressions are so complex that 

they are of little practical use; see Riordan [11], pages 81-7, and Takacs [12], 

pages 174-87. To obtain an expression which can be efficiently manipulated the 

transition probabilities will be approximated by their stationary distribution 

TT(k , y) , where 

7T(k , y) = lim pz k(t , y) . 
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The stationary distribution TT(k , y)  can be interpreted in two ways.  It can 

represent the probability that, at a random point in time, k units will be in 

use given that y are being rented (and that t is large).  Also it can be 

thought of as the proportion of time, over some long period of time, that k u- 

nits are in use when y units are being rented. Notice that 7T(k , y)  is in- 

dependent of both z , the initial number in use, and time; this can be shown 

rigorously for the systems we consider (and it also can be shown that Tr(k , y) 

exists), see TakScs [12], page 183. 

In the following the one period expected holding and shortage cost L (y) 

is calculated.  The p. d. f. of the equipment in use is approximated by its 

stationary distribution. We consider the holding cost first and then the shortage 

cost. 

A holding cost is charged for all of the items stored in the pool. It is 

proportional to the number of units at a given time and it is proportional to the 

length of time each unit is held in the pool. 

y ■ 

tit1+6ti 
time 

The Expected Holding Cost in a Small 
Interval of Time (t , t 4- 6t) . 

Figure 2.4 

The expected holding cost during a small  interval  of  time     (t    ,  t    -f  5t.)     it, 
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y 
h'  My - kmk , y)6t 

k=0 1 

where h1  is the constant of proportionality, in dollars per item per unit time. 

Summing over all intervals 6t  in  [0 , T]  gives an expression for the total 

holding cost during [0 , T] , 

y 
I h'i    Z     (y - k)TT(k , y)]6t . (2.8) 
i    k=0 1 

Letting  6t -*■  0 gives 

T y 

h'  /' My - k)7T(k , y)dt (2.9) 
k»0 

since (2.8) is just a Riemann sum.  Thus we obtain 

y 
Expected holding cost = h'T    My - k)TT(k   , y) (2.10) 

k=0 ' 

y 
= h My - k)TT(k , y) . (2.11) 

k=0 

Since hl  is in units of dollars per item per unit time h is in dollars 

per item per ptriod. Note that  h is identical with h' when one time period is 

taken as the unit of time, i.e., when T = 1 .  Notice also that (2.10) could have 

been obtained directly from (2.8) in this simple case.  In more complicated cases 

where p , (t , y) is used or an approximation is used which depends on t  the 

dependence oi t makes such a short cut impossible; in order to arrive at (2.10) 

we must go through (2.9). 

A shortage cost is charged for each unit demanded when there are none in the 

pool.  It is assumed proportional to the number of such lost customers only.  Since 
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a customer does not wait when there is uo inventory charging a shortage cost pro- 

portional to time has no meaning.  It can be shown under our assumptions that the 

expected number of lost customers during a period of time is  X'Pr{all equip- 

ment is in use} = X-irCy , y) ; see Hadley and Whiten [13], pages 177-80, and 

Takacs [12], page 183.  Here X represents the average demand during the period. 

Denoting the shortage cost, in units of dollars per lost customer, by s implies 

that the one period expected shortage cost is S'A'TT(y , y) .  The one period 

expected holding and shortage cost is the sum of the expected holding cost and the 

expected shortage cost. 

y 
L(y) = h E (y - k)TT(k , y) + sX7T(y , y) (2.12) 

k=0 

Assuming h and s are nonnegative we immediately have L(y)  nonnegative 

also.  It is important to note that in this case when P v(t , y)  is approxi- 

mated by w(k , y)  L (y) does not depend on the initial amount of equipment in 

use z , i.e., Lz(y) ■ L(y) • 

The last part of this section is devoted to showing that under certain con- 

citions L(y)  is discrete convex. We calculate an explicit expression for L(y) 

2 
and show that A L(y) > 0 if X/y < 1 where X is the average demand per period 

and u   is the average usage time. 

From queueing theory it is well known that for a y channel queueing system 

with Poisson arrivals and arbitrary independent holding times that, 

liZMiH, I 1^,-1 0 ., k , y 
TT(k , y) - ' 

otherwise, 
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Takacs   [12],  page 186.     me only condition necessary for the existence of 

TT(k   ,  y)     is that    v t 0   .     Define 

P(k).   I iM^^l 
j=0 ^ 

P(k) = -^^rf  

then the  stationary probabilities are 

Jlikl 
P(y) 

0  <  k  <  y 

TT(k  ,  y)   =   < (2-13) 

0 otherwise 

Before proceeding an important  fact must  be  noted.    First, we have assumed 

the demands for equipment  follow a Poisson process.     In reality this  assumption is 

not  too restrictive because of  the Central Limit Theorem of Reliability,   see 

Barlow and Proschan  [13],   pages  13-19.     This  theorem states  that  if demands are 

originating from    n    sources  independently of  each other then the  superimposed 

demand of these    n    sources  tends to a Poisson process regardless of  the distri- 

bution of demand  at each  individual  source as   the  number of  sources,   n   ,  gets very 

large,   if certain weak  (from a practical point of  view)  conditions are  satisfied. 

Consider the aircraft pooling problem discussed previously.    The demands are gen- 

erated by the occurrence  of  forest fires.    The number of possible  starting  loca- 

tions  for fires  is very very  large.    Assuming  the probability of  a fire  starting 

at  a  location is  independent  of what happens  at  other  locations  implies  that  the 

Central Limit Theorem of  Reliability can be  applied.     In some  cases  this assump- 

tion is valid although it  is obviously not universally true,  e.g.,  when a fire  is 

in existence at  a location it may be quite  likely  to spread  to several  other 
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surrounding locations. 

The shortage cost per period is now very easy to calculate.  By (2.12) we 

have 

shortage cost = sxP;y( . (2.14) 
P(y) 

The expected holding cost per period is also easy to calculate when using 

(2.11) 

y 

holding cost = h Z (y - k)^^- 
k=0       W 

holding cost = hFy - (X/u)1^ " ^1 (2.15) 

where P(-l) = 0 by definition.  Equation (2.12) gives the one period expected 

holding and shortage cost to be the sum of (2.1^:)  and (2.15) 

L(y) = h[y - (^v)?{l('y)
l)]  + sX-^} (2.16) 

for    y = 0  ,   1   ,   2   ,   .   .   .    with    P(-l)   =  0  .    Finally,  we  are  able  to show that 

under certain conditions    L(y)     is discrete convex.    This  is done  in the  following 

theorem. 

Theorem 2.3 

If    0  <   (X/u)   <  1     then  (i)  L(y)  ^ <»    as    y + °°  ,   (ii)   AL(0)  =  (h -  sX)/ 
2 

[1 +  (X/y)]   ,   and   (iii)   A L(y)   >   0     for     y = 0  ,   1   ,   2   ,   .   .   . 

Proof:     Note  first  that    L(0>   *  sX   >  0  .    The proof of   (i)   is  immediate be- 

cause    p(y)/P(y)  -»-0    as    y -* «>    and    0  <  P(y - 1)/P(y)   <   1     for all    y   .    To  show 

(ii) we calculate  the  first difference     AL(y)  = L(y + 1)   -  L(y)   , 
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AL(y)   -  h +  y       p(y) p(y + l)J   + s^p(y +  1)        p(y)J 

AL(0)   ^h-hi^m+s^.   sx   . 

Using the definition of    p(y)    and    P(y)     gives 

L(0)   = ^-f 
1 +- 

u 

proving (11).  To show (Hi) we calculate the second difference 

2 
A L(y) = AL(y + 1) - AL(y) . 

A ny; - yp(y+1)  p(y+2)   p(y) J + sMp(y+2) + p(y)   p(y+1)J 

_ ,/ 2|(v)l2P(v+2) - fP(v-H)]
2p(v) - p(v-i)p(v-H)p(v+2) 

Ul P(y)P(y+l)P(y+2) J 

.  Xrp(v+2)P(v)P(NH-l) + p(v)p(v.f2)P(v-H) _ p(vfl)P(v+2)P(v) 
+  yl        P(y)P(y+l)P(y+2) ZP(y)P(y+l)P(y+2)J ' 

Concentrating attention on just the numerator of the coefficient of h— let 

P(y+2) - P(y) + p(y+l) + p(y+2) and P(y+1) = P(y) + p(y+l) .  Upon collecting 

terms this numerator is 

[P(y)]2[p(y+2) - 2p(y+l) + p(y)] + P(y)[p(y) - p(y+1)][2p(y+l) 

+ >(y+2)] + p(y)p(y+l)[p(y+l) + p(y+2)l . (2.17) 

When y = 0 (2.17) equals e      which is strictly positive.  When y ■ 1 , 2 , 3 , ..^ 

we note that since p(y) > p(y+l)  for 0 < (X/u) < 1  the last two terms of (2.17) 

are positive.  But a closer examination of the first term, using the definition of 

p(y) , shows that p(y+2) - 2p(y+l) + p(y) > 0 for 0 < (X/y) < 1 . Now we look 
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at the numerator of the coefficient of sX , 

p()H-2)P(y)P(y+l) + p(y)P(y+2)P(y+l) - 2p(y+l)P(y+2)P(y) . 

Because p(y) > 2p(y+l)  for y = 1 , 2 , 3 , . . .  and 0 < (X/u) < 1  it is 

evident that this numerator is nonnegative.  Checking it at y = 0 it is easy to 

2 
see that it is nonnegative also.  The positivity of both terms of  A L(y)  for 

y = 0 , 1 , 2 , . . .  completes the proof of the theorem. 

The results of this section tell us that this special case of the rental in- 

ventory model satisfies the assumptions of Section 2.2 so that all of the results 

of this chapter apply.  In particular, the optimal policy has the form given in 

Section 2.4. We gather together here all of the assumptions for this special case. 

(i) Arrivals are a Poisson process with parameter X . 

(ii)  Usage times are independent, identically distributed according 

to an arbitrary distribution with mean y 

(iii)  0 < (X/y) < 1 . 

(iv) k>0,c>0,d<Ofand k+c>0. 

Making these assumptions the conditions determining the two critical numbers 

t and u can be made more explicit than the representation in Section 2.2. 

Theorem 2.4 deals with the lower critical number t and Theorem 2.5 is concerned 

with the upper critical number u . 

Theorem 2.4 

Let assumptions (i) through (iv) hold and suppose that k + c + h > 0 . 

(1)  If k + c + (h - sX)/(l + -) > 0 then t = 0 .  (2) If k + c + (h - sX)/ 

(1 + —) < 0 then t > 0 and t is determined from 
y 
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k + c + h + ^(£-2) _ lilzll, + sAr£itI . P(t-l)1 < 0 k + c + h + ^lp(t:_1) p(t)   J  + sAlp(t)       p(t_i)J       u 

k + c + h + hr^l   p(t) p(t+1)J   +  sAlp(t+l)        p(t)J   -  ü 

(2.18) 

where    P(-l)  = 0  . 

Proof:  From the proof of Theorem 2.2 

AL(y)  h + y p(y)    p(y+1)J + sAlp(y+1)   p(y)J 

thus 

k + c + AL(0) = k + c + (h - sA)/(l + -) > 0 
U  - 

proving (1).  Part (2) follows Immediately from the hypothesis and the fact that 

lim k + c + AL(y) =k+c+h>0 . 

Thus, the theorem is proven. 

Theorem 2.5 

Let assumptions (1)   through (iv) hold,  (i) If d + c + (h - sA)/(l + -) > 0 

then u = 0 .  (2)  If d + c + (h - sX)/(l + -) < 0 and  d + c + h + hr-[P^")
1^ - 

=7^T] + SA[J-PTTT " -^rr] >  0 for some finite y then 0 < u < » and u  is 
P(y+1)      P(y+1)  P(y) - 

determined from 

u P(u-l) P(u)     P(u) P(u-l) 

d + c + h + ^fPiHzil . Hal ]+ sAfP("-n) _ ^Mi, 0 
d + c + h + hr^l p(u) P(u+i)J

+ sAlp(u+l)   P(u)J- U ' 

(3)  If d + c + (h - sA)/(l + -) < 0 and d + c + h + h^-f^f1^- - —^7 + 
u \i    P(y)  F(y+l/ 

sAfP^.1^ - l^f] < 0 for all finite y then u = «= . 
P(y+1)   P(y) 

(2.19) 
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Proof:     The   difference     AL(v)      is   computed   in  the  proof  of   Theorem  2,A. 

Therefore 

d +  c  +   AL(0)   = d +  c +   (h  -   s\)/(l + -)   >   0   . 
u 

Using the definition of  u in Section 2.2 proves all three parts of the theorem 

immediately. 

Note that these theorems show that it is impossible to have  t ■ 0 and 

u = 0 .  Also notice that the upper critical number is finite only if -d • c + h 

Similarly, if -d < c + h  then the upper critical number is finite.  It seems 

reasonable to conjecture that ordinarily in real problems the return cost will be 

less than the rental cost,  -d < c . 

2 . 6 An Example 

Suppose an inventory system is described by the following values of para- 

meters«. 

A = 10 d = -5      z = 2 

u = 20 h = 1 

c =  7 s = 5 

k =  5 x = A 

Using part (2) of Theorem 2.4 

k + c + h ~ f = -20.7 
1 + - 

u 

therefore  t s 0 and  t  is determined by (2.18).  The results of Table 2.1 

facilitate the computation of the critical numbers. 
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TABLE  2.1 

THE CALCULATION OF THE CRITICAL NUMBERS 

Y P(Y) P(Y) P(v)/P(v+1) D(V)/P(V) 

0 0.61 0.61 0.67 1.00 
1 0.30 0.91 0.92 0.33 
2 0.08 0.99 0.99 0.08 
3 0.01 1.00 1.00 0.01 
4 0.00 1.00 1.00 0.00 

It easily can be checked using Table 2.1 and   (2.19)   that    t = 1   .     Before  cal- 

culating    u    we note  that    -d  <  c + h    therefore     u    is  finite.    Again  it can be 

checked  easily using the above  table and  (2.19)   that    u = 3  .    The optimal  policy 

described  in Section 2.4 gives  the number  to rent  during  the period,     y   ,   to be    3 

because     z  <  u  .    That  is,   too many units currently are  in inventory so one unit 

is returned. 

The  following table gives  the value of the one period expected holding and 

shortage  cost,    L(y)   ,  as  calculated from  (2.16). 

TABLE  2.2 

THE ONE PERIOD EXPECTED 
HOLDING AND SHORTAGE  COST 

y L(v) 

0 50 
i 17 
2 5.5 
3 2 
4 3.5 
5 4.5 
6 5.5 
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The two critical numbers can be calculated directly from their definition in (2.4) 

bv using Table 2.2.  This method actually is simpler for this example and, as it 

must, it pives identical results. 

The one period total expected cost when followine the optimal policy can be 

computed from the first expression for  C. (x , z)  given in the proof of Theorem 

2.2.  It can be checked easily that this expected cost is 28,  Using the same 

expression C. (x , z)  can be calculated for anv x  z  since in this example it 

reduces to 

(x , z) 

k(l - x) ^ c + L(l) 

ex + L(x) 

d(3 - x) ^ 3c + L(3) 

d(z - x) + zc + Liz) 

x •' 1 

1  x •- 3 

•f  z 

if  z 

3 I 
3 \ 

for x ^ z .  This expression in turn vields the entries in the following table, 

for x • z . 

TABLE 2.3 

THE ONE PERIOD COST FUNCTION 

C^x.z) 

X z   < 3 z  =   4 z  =  5 

0 29 - _ 

1 24 i        - - 
2 19. 5 - 
3 23 i 

i - 
4 28 j   31.5 - 
5 33 |   36.5 39.5 
6 38 i  41.5 44.5 
7 43 !  46.5 49.5 
8 48 I  51.5 54.5 
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Consider two variations of this example.  Suppose all of the parameters describing 

the inventory system are the same as above except that the initial numbers rented, 

x , and in use,  z , are different.  First, let  z = 0 and x = 2 .  The optimal 

policy is to continue renting the same number of units because x is between the 

upper and lower critical numbers. The expected cost in this case is, from 

Table 2.3, 19.5.  Second, let  z = 5 and x = 8 .  Now the optimal policy is to 

return 3 units and to rent only 5 during the period.  The expected cost is, in this 

case, 5A.5. 
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3. The  Multi-Period Model 

3.1     Introduction 

This  chapter   is devoted  to  extending  the  results  of  Chapter 2  to cover multi- 

period  rental   inventory problems.     We consider  an inventory system which operates 

for a number  of period.    Demands  for equipment occur  according  to a Poissor  pro- 

cess and  the   usage  times of  equipment  in  the  field  follow independent arbitrary 

distributions.     The  length of  each  period  is assumed  large  enough  so that   the 

p.   d.   f.     of   the quantity of  equipment  in use at the end of  the period  is  ap- 

proximated very closely by  the   stationary distribution     T(k   ,   y)   .     Decisions must 

be made at  the beginning of  each period  about  the  amount  of  inventory to rent. 

What  is  the  optimal policy?     It   is   shown  in  this chapter   that   the optimal  policy  is 

the  logical   extension of   the  one  period  optimal policy.      In each period    n     there 

exist   two  critical  numbers     t       and    u     (t     <  u  )     such   that   if  the  amount   of n n       n -    n 

equipment   rented  at  the  beginning  of  the  period  is   (1)   larger   than    u       then   the 

new quantity  rented  is    m3x(u     ,   z)   ,   (2)   smaller  than     t       then the new quantity 

rented  is     t     ,   (3)   in between     t       and     u      then  the   same  amount  is  rented. n n n 

A two  piriod  problem is  considered  firft.     When   its   solution is obtained  the 

solution  to   a general    n    period  problem becomes obvious.     In everything  that 

follows   the   standard dynamic programming  convention of  numbering time periods  back- 

wards  is  used.     That  is when considering an    n    period  problem the current   time 

period  is  called     n   ,   the next     n  -   1   ,   aid  co  on until   the   last which  is  called  1. 

Refer  to  Figure   3.1, 
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^ Ti n - 1   n - 2     ...      1 

The Convention for Numbering Time Periods. 

Figure 3.1 

3.2 The Two Period Mathematical Model 

The Mathematical model Is developed for a two period problem In this section. 

Let C»(x , z)  be the minimum expected cost Incurred during two periods If x  and 

z are the Initial numbers of equipment rented and in use, respectively, at the 

beginning of period 2 (i.e., the present). This function Is defined for 

x > z only.  The stochastic behavior of the Inventory level at the end of the 

period is assumed to be described by the stationary p. d. f. TT(k , y)  discussed 

in Section 2.5. The one period expected holding and shortage cost L(y) is 

assumed to be discrete convex but not necessarily as given by (2.16).  For example, 

the p. d. f.  of the equipment in use at any time during the period may not be 

approximated very closely by the stationary p. d. f.  irCk , y) . Or the hold .g 

and shortage costs may not be linear functions of the amount of equipment in the 

pool or the number of lost customers as assumed In the example of Section 2.5. 

By analogy with the one period model In Section 2.2 the total expected cost in- 

curred during both periods is 

y 
a(y - x) + cy + L(y) + a E C (y , J)TT(J , y) (3.1) 

j-0 

where a is the discount factor,  0 < a < 1 .  We wish to determine the value of 

y for which (3.1) is the smallest, hence, 

y 
z 

y>Z j=0 
C9(x , O - raln{a(y - x) + cy + L(y) + a E C^y , J)IT(J , y)}  (3.2) 

The minimum is attained since C.(y , j) > 0 for y > j 
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Defining 

y 
M (y) = L CAy   . j)Tr(j , y) (3.3) 

j=0 

we can write (3.2) as 

C2(x, z) = min{a(y - x) + cv + L(y) + aM^y)} . (3.A) 
v>z 

TV'- subscript 1 will be suppressed when ever no confusion will arise, i.e., 

■ ' ■)   =  M(y) . 

Define two nonne^ative real numbers  t„  and u9 by 

k(.„ - x) + ct2 + L(t ) + aM(t ) = min {k(y - x) + cy + L(y) + aM(v)1 
y>0 

(3.5) 

ü(u2 - x) + cu + L(u2) + aM(u2^ = inf ^d(y - x) + cy + L(y) + aM(y)} 
y>0 

The minimum can be used in the first equation of (3.5) because 

k(y - x) + cy + L(y) + oiM(y) -> o" as y -* o0 .  However, the infimum must be used in 

the second equation of (3.5) because d(y - x) -*■ -00 as y > -H» .  For convenience 

assume t» and u« are unique. Chapter 5 discusses the case when this is not true, 

If M(y)  is discrete convex then the two critical numbers car. be defined 

more explicitly, analogous with Section 2.2, by the conditions on the first dif- 

ferences of (3.1).  In the standard inventory models considered in the literature 

once convexity is shown for the one period model it is shown easily for the multi- 

period model.  We cannot show discrete convexity as easily because the p. d. f. 

TT(k , y) depends on y  (the standard models assume the p. d. f.  independent of 

y). Therefore even if the one period cost C^y , k)  is discrete convex in y we 

have no guarantee that C.(y , k)n(k , y)  is discrete convex; and even if it is 
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we cannot conclude that M(y)  is discrete convex because the limits of summation 

depend on y .  We will show that in fact M(y)  is not necessarily discrete convex, 

Theorem 3.1 will show that in some cases it is and in others it is not. 

Theorem 3.1 

Suppose iT(k , y) = p(k)/P(y)  for 0 < k < y and 0 otherwise. Let assump- 

tions (i) through (iv) of Section 2.5 hold. 

(1) If  1 < t < u + 1 then 

!0 0 < y < t - 1 

k + c + AL(t) y = t - 1 

A2L(y) t < y < u - 1 

(2) If t = u - 1 then 

A2M(t) = [d + c + AL(U)][TT(U + 1 , u + 1) - 1] 

Proof: Calculating the first and second differences 

AMfy)  = M(y + 1)  - M(y) 

y 
-  I     [CAy + I   ,   j)u(j   ,   y + 1)   - C   (y  ,  J)TT(J   ,  y) ] 

J-0 
(3.6) 

+ C^y + 1 , y + l)iT(y + 1  , y + 1) 

A2M(y)  =  AM(y + 1)  -  AM(y) 

y 
=     Z   [C   (y + 2   ,  J)TT(J   ,   y +  2)  + C   (y  ,   jMj   ,  y) 

j-0 

-  2C1(y + 1   ,  j)7T(j   ,  y + 1)] (3.7) 

+ C^y + 2   ,   y + 2)TT(y + 2   ,   y + 2)  + C^y +2   ,  y + 1)TT 

(y + 1   ,  y +  2)   -   2C1(y + 1   ,  y +  iMy + 1   ,   y + 1)   . 
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The. optimal policy given in Section 2.4 implies that if j < t  then 

k(t - y) + ct + L(t)      y < t 

C^y , j) =  < cy + L(y) t < v < u (3.8) 

d(u - y) + cu + L(u)      y > u 

and if  t < j < u 

1 cy + L(v) t < j < v ^ u 
CjCy , j) = ~  '      (3.9) 

/ d(u - y) + cu + L(u)        y > u 

and if  j > u 

C1(y , j) = d(j - y) + cj + L(j) u < j - y .       (3.10) 

Using (3.8) through (3.10) we obtain, after simplification, for 0 ■' t ^ u , 

(     -k 0 < y < t 
AM(y) = { (3.11) 

( C + AL(y) t < y < u 

from which the first part of the theorem easily follows.  Or, proceeding directly, 

by using  (3.8) through (3.10) in (3.7) we obtain the same result. The last part of 

the theorem follows in a straight forward manner by using (3.8) through (3.10) 

in (3.7), after the cancellation of a few terms.  Thus the theorem is proven. ^^W. 
•V 

It follows from this theorem that M(y)  is not necessarily discrete convex 

2 
because  A M(t) < 0 when  t = u - 1 .  However, it is also true that in some cases 

M(y)  is discrete convex.  For example, if d + c + AL(y) < 0 for y "> 0  then 

2 
u = o° .  Thus  A M(y) > 0 if L(y)  is discrete convex since k + c + AL(t) ^ 0 

by the definition of t . 

Theorem 3.1 illustrates the fact that in some cases M(y)  definitely is or is 
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2 
not discrete convex.  If A M(y) is calculated for y > u when u < «> ex- 

pressions are obtained that are much more complex.  It is difficult to determine 

2 
the sign of A M(y)  in this case because of the complexity of the expressions. 

Points can be found, however, where the second difference is positive or negative 

depending on the shape of the expected holding and shortage cost function L(y) 

even though L(y)  still is assumed discrete convex. 

3.3 Solution of the Two Period Model 

The solution to the two period model when M(y)  is discrete convex is 

presented in this section. The case when M(y)  is not discrete convex is dis- 

cussed and solved in Chapter 5. For the remainder of this chapter M(y)  is 

assumed to be discrete convex. First we s' ow that the two critical numbers t« 

and u9 exist and that  t9 < u„ .  Then the optimal policy is determined. 

We follow Section 2.2. If M(y) is discrete convex so is a(y - x) + cy + 

L(y) + aM(y) because a > 0 . Thus k + c + AL(0) + aAM(O) > 0 if and only if 

t2 = 0 . Clearly k + c + AL(0) + aAM(O) < 0 if and only if 0 < t < » in 

t 

which case t»  is determined by 

k + c +  AL(t2  -  1)  + aAM(t    -l)<0<k+c+  AL(t2)  + aAM(t2)   . 

(3.12) 

^|   Similarly d + c + AL(0) + aAM(O) > 0 if and only if u« = 0 . Also d + c + 

\ \AL(y) + aAM(y) < 0 for y = 0 , 1 , 2 , ...  if and only if u2 = <» .  Finally, 
'4 

dWc +  AL(0) + ciAM(O) < 0 anc. d + c + AL(y) + aAM(y) > 0 for some finite non- 

negative^yalue of y when anc" only when 0 < u„ < ^ in which case u- is determined 

V 
v. 
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from 

d + c +  AL(u2  -   1)   + aAM(u2 -1)   <0^d+c+ AL(u   )  +  aAM(u   )   . 

(3.13) 

The two critical numbers  t„ and u„ defined in (3.12) and (3.13) obviously 

exist and are uniquely determined.  It is easy to see that t„ < u„ . 

Theorem 3.2 

If assumptions (1), (2), and (3) of Section 2.2 are true and if M(y) is 

discrete convex then t- < u. . 

Proof:  Applying the method of proof used in Theorem 2.1 gives this theorem 

immediately. 

Now we show that whenever the lower critical number from the one period model 

t - t. > 0  then the lower critical number from the two period model  t„ > 0 . 

Theorem 3.3 

If  t « t > 0 then  t  -> 0 . 

Proof:  From the proof of Theorem 3.1 we have  AM(y) = -k for 0 < y < t . 

By hypothesis t N 0 so that  k + c + AL(0) < 0 thus we have k + c + AL(0) + 

aAM(O) < 0 proving the theorem. 

When applying the analysis of Section 2.3 it is very easy to see that the op- 

timal policy for the two period model has the same form as the one period optimal 

policy given in Section 2.4.  That is, 

(1) if x > u?  then y = max(u„ , z) , 

(2) if t» < x < u? then y = x , 

(3) if x < t  then y « t« , 
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where x and  z are as defined at the beginning of this section and y is the 

quantity rented during the current period. 

Theorem 3.4 

Suppose    TT(k  ,   y)  = p(k)/P(y)     for    0  < k < y    and    0    otherwise.    Let assump- 

tions  (i)   through  (iv)  of Section 2.5 hold.    Let    L  (y)  = L(y)  + aM(y)    and 

y 
M  (y)   =     Z CAy  ,   J)TT(J   ,   y)   . 

j-O 

(1)    If    0  <  t-  < u    + 1    then 

0 0<y<t2-l 

^2M2(y)        /k + c +  AL2(t) y =  t2 -   1 

2 
A L2(y) t2  < y  <  u2  -   1 

(2)    If    t    = u2 +  1     then 

A2M2(t2)  =   [d + c + AL2(u2)l[Tt(u2 + 1   ,   u2 +  1)   -   1]   . 

Proof:  it is clear that the proof of Theorem 3.1 can be followed step by step 

changing only C^x , z) to C2(x , z) , L(y) to L?(y) , and M(y) to M2(y) . 

3.4 The N Period Model and Its Solution 

Now we discuss the general multi-period model and its solution. In a manner 

analogous with Section 3.2 let C (x , z)  be the minimum expected cost incurred 

during n periods if x and z are the initial numbers of equipment rented and 

in use, respectively (i.e., at the beginning of period n ).  This function is 

defined only for x > z > 0 . The stochastic behavior of the inventory level at 

the end of the period is assumed to be described by the stationary p. d. f. 
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^(k , y) . However, as noted in the beginning of Section 3.2 L(y)  is assumed 

discrete convex but not necessarily as given by (2.16). The functional equations 

for and N period model are, 

y 
C  (x   ,   z)   = inin{a(y - x)  +  cy + L(y)  + a I C       (y   ,   J)IT(J   ,   y)} 

y>z j=0 
(3.14) 

for n = 1 , 2 , ... , N with C (x , z) = 0 .  The minimum in (3.14) exists 

because C -.(y , j) > 0  for y > j . Let 

y 
M   (y) -  Z C   (y , j)n(j , y) 
n i      J^Q 

and Ln(y) = L(y) + aM _ (y)  for n = 1 , 2 , ...  with M (y)  = 0 . 

Define two nonnegative real numbers t  and u  by 

k(t - x) + ct + L(t ) + aM .(t ) « min {k(y - x) + cy 
n        n     n     n-in     - 

y>0 

+ L(y) + aMn-1(y)} (3.15) 

d(u - x) + cu + L(u ) + aM . (u ) » inf {d(y - x) + cy 
n        n     n     n-1 n   y>0 

+ L(y) + aMn-1(y)} . (3.16) 

By this time it should be clear that the minimum can be used in (3.15) because 

k(y - x) -► °° as y ->■ » but the infimum must be used in (3.16) because 

d(y - x) -> -oo as y ->■ *   por convenience assume t  and u  are unique. Chapter 

5 discusses the case when this is not true.  When M .. (y)  is discrete convex then 

the two critical numbers  t  and u  can be defined more explicitly, as done pre- n      n r J * v 

viously for the one and two period problems. 



46 

Theorem 3.5 

If all   subscripts  in Theorem 3.4 are changed from    2    to    n    then the  theorem 

is  still  true  for    n =  1   ,   2   ,   3   ,   ...    with    M  (y)  = M(y)   . 

Proof:     Identical with the proof of Theorem 3.1 except that    C. (x  ,  z)   ,  L(y)   , 

and    M(y)    must be changed  to    C _. (x  ,  z)   , L    - (y)   ,   and    M    , (y)   . 

This  theorem indicates  that  a necessary condition for the discrete convexity 

of    M  (y)     is  that    L  (y)  = L(y)  + aM _1(y)     is discrete  convex.    Thus    M    , (y)   , 

M    2^   »   •••   » H. (y)    must necessarily be discrete convex.    The case when 

u    ■ "o    is  a  trivial example of a  discrete convex    M  (y)   .    From Section 3.2 we 

know that  there exist examples for which   M(y)     is not discrete convex and hence 

there are cases when    M  (y)     is not discrete convex.    We will consider only the 

case when    M  (y)    is discrete convex in the remainder of  this chapter.    Chapter 5 

examines  the problem when    M  (y)     is not discrete convex. n 

When    M   (y)     is discrete convex then the critical  numbers can be defined  in 
n ' 

a manner  identical with the definitions of    t-    and    u_     in Section 3.3,  changing 

only the subscripts    2    to    n  .     Theorems 3.2 and  3.3 can be extended. 

Theorem 3.6 

If assumptions (1), (2), and (3> of Section 2.2 are true and if M . (y)  is 

discrete convex then t < u . 
n - n 

Proof:     The method of proof used in Theorem 2.1 gives the theorem immediately. 

Theorem 3.7 

If    t -  t,   > 0    then    t    >  0   . 1 n 

Proof:  The proof is by induction. By Theorem 3.3  t- > 0 . Assuming 

t _, > 0 we will show that  t > 0 .  By hypothesis t > 0 so that k + c + 

AL(0) < 0 .  But AM ,(0) = -k by Theorem 3.5 since t , > 0 . Thus k + c + 
n-1 n— i 
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AL(O) + aAM(O) < 0 which proves the theorem. 

The two period optimal policy extends to the n period case.  If at the 

beginning of the nth period there are x units of equipment rented and z 

units in use then the new amount of rented equipment y is 

(1)  if x > u  then y = max(u  , z) , n      J n 

(2) if t  < x < u then y » x , 
n -  - n 

(3) if x < t  then y = t  . n      -^   n 

Theorem 3.8 

If L(y)  and M (y) are discrete convex then C , (x , z)  is discrete con- 

vex for all x > z for each value of z . 

Proof: The optimal policy given above implies, for x > z , 

k(t ., - x) + ct .. + L .A".  ,.)    x < t .. n+1        n+1   n+1 n+1 n+1 

CX + Ln+l
(x) Vl ^ X - Vl 

Cn+l
(x ' 2) ■ { d(Vl * X) + CVl 

+ V^V^      lf Z - Vl ) 
\   x > u +1 

d(z - x) + cz + L ^(z)   if z > u ^1 \     n l 

n+l n+1 ) 

where L ., (y) ■ L(y) + iM (y) which is discrete convex. The remainder of the 

proof is almost identical with the proof of Theorem 2.2, the only difference being 

that L(y) must be replaced by L .i(y) • 

3.5 An Example 

Suppose an inventory system operates for two periods and in each period the 

parameters have the same values given in the uxample of Section 2.6. Assume a dis- 

count factor of unity.  The initial nuwbers rented and in use are 4 and 2 
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therefore x = x^ = 4 and z = z« = 2 . The first step in solving the two period 

problem is to solve the one period problem. This was done in Section 2.6.  Thus 

t. = 1  and u1 = 3 . To determine the critical numbers t„ and u»  it is 

simplest computationally to use their definitions given in (3.5) rather than the 

conditions on the first differences. Using the definition of M(y)  in (3.3) and 

Tf(j , y)  in (2.13) we can make the following table: 

TABLE 3.1 

THE CALCULATION OF THE CRITICAL NUMBERS 

1 

(1) (2) (3) (4) 1  (5) (6) 

y (k+c)y (d+c)y M(v) L(v)+M(v) (l)+(4) (2H(4) 

0 0 0 29 79 79 79 
i ' 12 2 24 41 53 43 
2 24 4 19.5 25 49 29 
3 1 36 6 23 25     | 61 31 
4 ' 48 8 28 31.5   | 79.5 39.5 
5 60 10   ' 33 37.7   I 97.5 47.5 

Columns (5) and (6) of Table 3.1 give t- = 2 and u = 2 . Consequently the op- 

timal policy for the two period problem is as follows.  At the beginning of the 

current period (x^ = 4 , z» = 2) return 2 units and continue renting 2 during 

the period because x» > u_  implies y„ = max(u» , z-) = 2 . Then at the beginning 

of the next period x. = y9 » 2 is in between the critical numbers of the period 

(t1 = 1 , u1 = 3) so that the same number will be rented during the period. 

The two period total expected cost when this policy is followed, C2(x , z) , 

can be computed by using the expression in the proof of Theorem 3.4.  It can be 

checked that this expected cost is 49 . Using the same expression C_(x , z) can 

be calculated for any x > z  since in this example it reduces to 
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k(2 - x) + 2c + L(2) + M(2) 

C9(x , z) =  < d(2 - x) + 2c + L(2) + M(2) 

V d(2 - x) + zc + L(z) + M(z) 

if    z   <  2 

if  z • 2 1 
. 9 

This expression in turn yields the entries in the following table, for x   ■  z 

TABLE 3.2 

THE ONE PERIOD COST FUNCTION 

C„(x , z) 

X z -   2 z = 3 z = 4 

0 49 - - 

1 44 - - 
2 39 - - 

3 44 46 - 

4 49 51 59.5 
5 54 56 64.5 
6 59 61 69.5 
7 64 66 74.5 
8 h9 71 79.5 

A variation of this example is considered.  Assume all parameters of the in- 

ventory system are the same except the initial numbers rented and in use x  and 

z9 are different.  Suppose xn = 8  and  z0 = 4 .  The optimal policy is to re- 

turn 4 units and to continue rcntinp  4 units since x„ > u  implies 

y„ = max(u9 , z^) = z  .  The expected cost associated with doing this is, from 

Table 3.2, 79.5 .  At the beginning of the next period x. =  y^ =  ^  >  ui  therefore 

y. = maxCu. , z ) = 4 or  3 depending on whether or not  z. = x.  or z  < x. , 

respectively. 
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4.  The Infinite Period Model 

4.1 Introduction 

In this chapter an inventory system which operates for an infinite number of 

periods is considered. The mathematical model is formulated first. Then the 

solution is presented.  It turns out to be similar to the solution for the single 

and multi-period models.  The relationships between the multi-period and infinite 

period models are discussed next. We will see that in a sense the infinite period 

model is a simple approximation of an n period model for large n . 

4.2 The Mathematical Model 

We have a system which operates forever; there is never a last period.  The 

problem which is faced at the beginning of one time period is identical with that 

faced at the beginning of any other time period. Let C(x , z) be the minimum 

expected cost incurred during the operation of the inventory system if x and z 

are the initial quantities of equipment rented and in use, respectively.  This 

function is defined for x > z only. Demands for equipment occur according to a 

Poisson process and the usage times of equipment in the field follow independent 

arbitrary distributions.  The length of each period is assumed large enough so that 

the p. d. f.  of the quantity of equipment in use at the end of the period is 

approximated very closely by the stationary distribution. As noted in the 

beginning of Section 3.2 L(y)  is assumed discrete convex but not necessarily as 

given by (2.16). Expenses occur during each of an infinite number of time periods. 

In order to keep the sum of these expenses finite the discount factor a is 

assumed strictly less than one, i.e., 0 < a < 1 . 

When writing down the functional equation of the infinite period model the key 

fact to notice is that the future situation faced at the beginning of the next 
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period is identical with the situation at the current time (except possibly the 

current state of the system will be different). Thus, 

y 
C(x , z) = min {a(y - x) + cy + L(y) +o ^ C(y , j)Tr(j , y)} 

y>z j»0 (4.1) 

where 0 < a < 1 . The single equation (4.1) describes the infinite period problem. 

A system of n equations, see (3.14), is needed to describe the n period problem. 

Thus the infinite period model is simpler than an n period model in the sense 

that only one equation is needed rather than a system of n equations. Because 

of this simplicity it would be very nice if by solving the infinite period model 

we could infer something about the solution of an . n period modo.l. A desirable 

relationship would be the knowledge U.9t the solution to (4.1) fpproximates, in 

some sense, the solution to (3.14). 

The solution of the infinite period model is discussed in the next section 

and then in the sections after that its relation to the solution of a multi-period 

model is analyzed. 

4.3 Solution of the Infinite Period Model 

The solution of the infinite period model is considered in this section. 

Define 

y 
M00(y) = I C(y , J)TT(J , y) . 

j-0 

Then rewrite (4.1) as 

C(x , z) - min {a(y - x) + cy + L(y) + aMw(y)} . 
y>z 

It will be shown in the next section that M (y) ■ lim M (y) i«8 n -► » . Thus if 00        n 
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M (y)  is discrete convex for each n then M (y)  is discrete convex. Only 

this case is considered in this section; the more general case is discussed in the 

next chapter. 

Define two nonnegative real nonnegative real numbers t  and u  by 

kCt^ - x) + ct^ + L{tJ  + aüjtj  = min {k(y - x) + cy + L(y) + (Mjy)} 
y>0 

d(uoo - x) + cu^ + LCuJ + oM^uJ  m  inf  {d(y - x) + cy + L(y) + aM^Cy)}   . 
y>0 

The reasons for the usage of the minimum and the infimum are similar to the reasons 

for their use in the multi-period model in Section 3.2. As in that section, also, 

we assume t  and u  are unique. Chapter 5 discusses the case when this Is not 

true.  Since M (y)  is supposed to be discrete convex these two critical numbers 

can be defined more explicitly by the conditions on the first differences as done 

for the one and two period models. Theorem 3.6 can be extended easily to show 

that t < u . Because of the discrete convexity of M (y)  the optimal policy 
00—00 ' 00    "' »^^ 

clearly is 

(1) if    x > u^    then   y ■ maxCu^  ,   z)   , 

(2) if    t    < x < u      then    y - x   , v 00    — — 00 ^ ' 

(3) if    x <  t^    then    y - t^ , 

where    x    and    z    are the amount of equipment rented and in use,  respectively, 

at the beginning of the current period and    y    is  the new amount rented. 

A.4    Convergence« Existence,  and Uniqueness Properties 

The object of this section is threefold.    First it is to show that  the    n 

period minimum cost function    C (x , z)    converges as    n -► »   monotonically and 
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uniformly in x for each z , for all x in any finite interval. Second we show 

that the limit C*(x , z)  « lim C (x , z) , as n ->• » , satisfies the functional 

equation of the infinite period model (4.1). Third, any other solution to (4.1) 

which is bounded in finite intervals is identical with C*(x , z) , i.e., the 

solution of (4.1) is unique among this class of bounded solutions. Thus the limit 

C*(x., z) is the minimum expected cost for the infinite neriod model, i.e., 

C*(x , z) « C(x , z) . Similar results have been obtained in the literature for 

standard inventory models; see Dvoretzky, Kiefer, and Wolfowitz [1], Karlin [14], 

Bellman, Glicksberg, and Gross [15], Bellman [16], Whisler and Parikh [17], 

Igelhart [18], and Abrams [19]. The following theorems are based on these results. 

Theorem 4.1 

For all x in any finite interval lim C (x , z) • C*(x , z) , as n -^ <» , 
n 

exists for each z . Moreover, the convergence is monotone and uniform in x for 

each z and if L(y) and M (y) are discrete convex then C*(x , z) is discrete 

convex. 

Proof: The proof proceeds in three parts. We first show that C (x , z ) > 

C . (x , z) . Then by showing that C (x , z) is bounded from above we conclude 

that lim C (x , z) exists. The final step is shoving that the convergence is 

uniform. 

(i)  Monotonicity of C (x , z) . The proof is by induction. Let 

A(y , x) ■ a(y - x) + cy + L(y) . Then 

y 
C (x , z) - min {A(y , x) + a E C  (y , J)Tr(J , y)} 

y>z J-0 n"1 

for    n ■ 1  , 2  ,   ...    with   C0(x , a) - 0   by definitlcn.    Let 
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y 
T(y , x , C .) » A(y , x) + a Z C  (y , J)TT(J , y)        (4.2) 

T(y* , x . C^^ - mln T(y , x , C^^ (4.3) 
y>z 

where y  is the optimal policy in period n . Therefore we have C (x , a) = 

T(y* , x , C _.)  for n = 1 , 2   By definition C1(x , z) > C (x , z) = 0 

for all x > z .  Assuming C (x , z) > C _. (x , z) for x > z we will show that 

C ., (x , z) > C (x , z) . We have 
n+1      - n  ' 

Ctri.l(x ' 2) " Cn(x ' Z) - T(d ' X ' Cn) " T(yn ' X ».Vl5 

> T(y!Li , x , C ) - T(y*   . x , C .) ■'n+l *     n     ■'n+l *   ' n-1 

^+1 

Vl^n+l ' J)]^ ' yn+l> 

> 0 

by the inductive hypothesis. Thus we have proven that C tx , z)  is monotone 

increasing. 

(ii)  Boundedness of C (x , z) . We show that the C (x , z)  are bounded 

from above by a finite number for all n . 

Cn(x , z) - T(y* , x , Cn_1) < T(x , x , C^) 

y 
E 

j-0 
ex + L(x) + a E Cn_1(x , j)Tr(j , x) . (4.4) 

Similarly 

x 
C .(x , z) < ex + L(x) + a E C  (x , j)Tr(j , x) .        (4.5) 
n-i       - j-0 n-/ 
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Substituting  (4.5)  into  (4.4)  and continuing the  iterative process yields 

C   (x  ,  z)  = ex + L(x)  + a[cx + L(x)]  +  ...  + a""  lex + L(x)]   . 

(4.6) 

From (4.6) we conclude that, for n=0,l,2,... , 

„ , N  ex + L(x)    M 
C (x , z) < —: ^-t- < —— < co 
n-  1-a  -1-a 

for 0 < a < 1 and 0<z<x<X<00 where X is a very large fixed real 

number.  It is so large that the number of rented units never exceeds it (i.e., 

y < X for all n); in reality such a number must exist. Thus there exists a 

limit to which C (x , z) converges. Define C*(x , z) = lim C (x , z) for 

x > z . By Theorem 3.8 each C (x , z)  is discrete convex therefore C*(x , z) 

is also because it is just the limit of discrete convex functions, 

(iii) Uniformity of Convergence. First it is shown that 

C (x , z) - C ,(x , z) < an'ln (4.7) 
n        n-i      - 

for n » 1 , 2 , ... where M is as defined in (ii). The proof of this fact is 

by induction. We have 

C1(x , z) - C0(x , z) = T(y* , x , C0) < T(x , x , C0) < M < oo 

for x in the interval [z , X] . Assuming (4.7) true ve look at 

C
n+l

(x • z) " Cn(x • 2) ' T(Vl • x • V " T(< • * • Vl' 
< T(y* , x . Cn) - T(y*n . x . C^) 

M 
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Using the inductive hypothesis we obtain 

C ^ (x  ,  z) - C  (x  ,   z)   < a1^ . n+1 n - 

Thus (A.7) holds for n = 1 , 2 , ...  as claimed.  But if 0 < a < 1 then 

E aSi  « ., M  < » . (4.8) 
-     1 - a 

n=0 

To show that  the convergence is uniform we look at the series 

I [Cn+1(x  ,  z)  - Cn(x   ,  z)] (4.9) 
n=0 

and note that by (4.8) each bracketed term is bounded from above by a real number 

such that the sum of all of the real numbers is finite. We conclude that the 

series (4.9) converges uniformly.  Thus by definition C (x , z) converges uni- 

formly. This completes the proof of the theorem. 

From this theorem we see that  |c ,. (x , z) - C (x , z) I ->■ 0 as a ■* <*> 1 n+1        n      ' 

for each z < X and all x in [z , X] where X is the large finite upper bound 

on the inventory level defined in the theorem. 

Theorem 4.2 

C*(x , z)  satisfies (4.1). 

Proof:  The proof proceeds in two steps. First it will be shown that 

11m C (x , z) - C*(x , z) < mln T(y , x , C*) (4.10) n *** n " 
y>z 

11m C (x , z) « C*(x , z) > mln T(y , x , C*) . (4.11) 
n-*00 n "■ 

y>Z 
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To show (4.10) we note that 

C (x , z) = min T(y , x , C  ) < min T(y , x , C*) 
y>z y>z 

because C (x , z) < C*(x , z)  by Theorem 4.1.  Letting n -* o° gives (4.10) 

To show (4.11) we note 

C*(x , z) > C (x , z) = min T(y , x , C .) = T(y* , x , C   ) 
— n n— i n~ i 

y>z 

where y*  is the minimizing value of y .  Letting n -* « gives 

C*(x , z) > l^m T(y* , x , C^) > min l^m T(y , x , C^^ 
y>z 

= min T(y , x' , C*) 
y>z 

by Theorem 4.1, thus proving (4.11). 

Theorem 4.3 

Any solution g(x , z)  to (4.1) which is bounded in finite intervals is 

identical with C*(x , z) , i.e., g(x , z) = C*(x , z) . 

Proof: Let g(x , z)  be any other solution to (4.1) that is bounded in 

[z , X] . We proceed by induction in a method similar to the proof of Theorem 

4.1.  By the hypothesis 

|g(x , z) - C0(x , z)| < M' < co 

for x  in [z , X] . Now we assume that 

g(x , z) - Cn_1(x , z)l < ct^M' . 
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Then 

g(x , z) - C (x , z) = T(y , x , g) - T(y  , x , C  > 
n                       n      n—i 

< T(y . x , g) - T(y  , x , C  ) 
—   n           n      n-i 

and 

g(x , z) - C (x , z) > T(y , x , g) - T(y , x , C .) 
n      — n-i 

where y Is the minimizing value of y . Hence 

|g(x , z) - Cn(x » z)| < max {|T(yn , x , g) - T(yn , x , C^^ | ; 

|T(y . x , g) - T(y , x , C^^ |} 

yn 
< max {a I   |g(yn . j) - Cn_1(yn , j)|7r(j , yn) ; 

a S lg(y , J) - C   (y , j)|Tr(j , y)} 
j-0 i 

which is by the Inductive assumption 

|g(x , z) - Cn(x , z)| < a1^' . 

Since 0 < a < 1 we conclude that the infinite series 

I  [g(x , z) - C (x , z)] 
n-0 

converges absolutely and uniformly, therefore C (x , z) converges uniformly to 

g(x , z) which implies that C*(x , z) is identical with g(x , z) on the finite 

interval z < x < X , i.e., C*(x , z) ■ g(x , z) . 

The conclusions of the above thvee theorems have interesting implications. 
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In practical situations the results of the infinite period model can serve as an 

approximate solution to multi-period problems when the number of periods is 

sufficiently large.  Such an approximation is useful because for infinite period 

problems only one functional equation has to be solved whereas for multi-period 

models many functional equations must be solved (n for an n period problem). 

Any reduction in effort by solving only one rather than many functional equations 

is an attractive feature of the infinite period formulation. Also, the structure 

of the optimal policy for an infinite period model can be considered simpler than 

the structure of the optimal policy of a multi-period model in the following 

sense. The critical numbers in an infinite period problem remain the same from 

period to period whereas in a multi-period problem the critical numbers may be 

different each period. Using the solution of the infinite period model in a multi- 

period problem naturally is not optimal.  However, the theorems of this section 

show that such a policy is approximately optimal for large n .  The method of 

proof in Theorem 4.3 provides a bound on the difference between the costs of the 

two policies. 

4.5 Limiting Behavior of the Critical Numbers 

The critical numbers t  and u  are discussed in Chapter 3. Their relation- 
n      n r 

ship to the critical numbers t  and u  defined in Section A.3 are analyzed in 

this section. We will show that under certain conditions the sequence {t } is M n 

monotone increasing and converges to    t     .     H«-    «ver,  only the weaker conclusion 

that    u      converges  to    u^ ,  under certain conuitions can be  shown. 

Theorem 4.4 

The sequence  {t } is monotone increasing and bounded from above by t  if 

i 

-,....   — _. ^..— -■-uniwiwii*^ — ■ •• 
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M (y)     is discrete convex for    n = 1  ,  2   ,   ...   . 

Proof:    From (3.11)     AM (y)  = -k    for    y <  t      therefore using discrete con- 

vexity gives, 

AMn(y) - 
- k 

> - k 
(4.12) 

The definitions of t  and t .. are, for n = 1 , 2 , ... , 
n      n+1 

k + c + AL(t - 1) + aAM , (t - 1) < 0 < k + c + AL(t ) 
n        n-1 n        - n 

+ aAM^ .(t ) n-l n 
(4.13) 

k + c + AL(t ,. - 1) + aAM (t .. - 1) < 0 < k + c + AL(t .,) n+1        n n+1        - n+1 

+ aAM (t ... . 
n nfl) 

(A.14) 

Now we show that t .. > t  for any positive integral value of n . Clearly this 

is true if t = 0 so assume t > ü .  Using (4.12) in (4.13) and (4.14) yields, 
n n 

k + c + AL(t -l)-ak<k + c-t AL(t - 1) + aAM . (t - 1) n        - n n-i n 

< 0 < k + c + AL(tn+1) + aAMn(tn+1) . 

If t i1 < t  then by (4.12) AM (t ^J = -k so that 
n+1   n n n+i 

k + c + AL(t -l)-ak<k + c + AL(t ^) - ak n n+1 

which implies t < t 1  by the discrete convexity of L(y) which is a contra- 

diction. Thus for n - 1 , 2 . ... t <t.1. n - n+i 
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The definition of    t       is 
00 

k + c + AL(t    -  1)  + ctAM (t    - 1)   < 0  < k + c + AL(t ) 
00 CO        00 — oo 

+ afiM (t )   . (4.15) 
00 00 

Using the same method of proof as above shows that t < t  since (4.12) holds 

for n = <» . The proof is complete. 

Theorem 4.4 implies that lim t = t' , as n -► <» , exists since t  < " . 
n n 

We will show that in fact t' = t  . 
00 

Theorem 4.5 

If M (y) is discrete convex for n = 1 , 2 , ... then lim t = t1 = t , 
n n       oo 

as n ->■ <» . 

Proof: Let 

h (y , h) = k(y - x) + cy + L(y) + »M  (y) 

then 

h (t , n) < h (y , n) 
x n    - x -^ ' 

for all y > 0 . But C (y , z) / C(y , z) by Theorem 4.1 therefore M (y) / M(y) 

which implies that h (y , n'1 / h (y , «O  as n -► «> . Thus 

hx(tn , n) < hx(y , n) < hx( y , «) . 

Letting n •+ <XI gives 

hx(t
, , <») < hx(y', ») 
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for all y > 0 which implies that t' = t , proving the theorem since t  is 

unique. 

Theorem 4.6 

If M (y) is discrete convex for n = 1 , 2 , ...  and all u  are finite 
n ^ '   ' n 

then 11m u ■ u1 ■ u ,as n •*• «» . 
n       o" 

Proof: By hypothesis all u  are bounded thus there exists a convergent 

subsequence of the sequence  {u } . An argument similar to the one used in 

Theorem 4.5 shows 

8x(un » n) _ 8x
(y ' ") 

where 

g (y , n) = d(y - x) + cy + L(y) + QtM  (y) . 
A 11  X 

Hence any limit point of the sequence {u } minimizes g (y , cx>) •  But g (y , 0o) 
l\ J\ J\ 

has a unique minimum by assumption, therefore the sequence {u } has exactly one 

limit point. Thus lim u = u' exists and u' = u proving the theorem, Graves 

[20],   page 49. 
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5. A Model for Discrete Non-Convex Cost Functions 

5.1 Introduction 

All of the problems studied up to this time assume that the relevant cost 

functions are discrete convex. Although such cases do occur in reality, a simple 

example is given in Section 3.2 in which this is not true. The present chapter 

considers the rental inventory problem when no assumptions are made about the one 

period expected holding and shortage cost L (y) other than it being nonnegative. 

If a function is not discrete convex it will be called discrete non-convex. Note 

that in addition to L (y) being arbitrary it is now permitted to depend on the 

initial number of units in use,  z .  In Section 5.8 we will see that such a case 

can occur if the nonstationary transition probabilities p   , (t , y)  are used 

to calculate L (y)  rather than the stationary probabilities TT(k , y) . 

As in the previous chapters the one period model and its solution forms the 

basis for the multi and infinite period models. Thus it is discussed first and in 

the greatest detail.  The variations of this solution which occur when L (v) 
z ■ 

is assumed discrete convex  (but  still a function of    z)   and when L(y)     is assumed 

discrete non-convex and  independent of    z    are discussed.    Also, we explore the 

relationships between  the optimal policy previously obtained  for the discrete con- 

vex case and  the  optimal policy of  this  section for the discrete non-convex case. 

The multi and  infinite period models are discussed next.    Finally, we discuss  the 

calculation of    L   (y)     when using    p         . (t   ,  y)    in the  special case of Poisson 

arrivals and negative  exponential usage  times. 

5.2 The One Period Model 

In this  section  the one period model  is  formulated first.     Then it  is shown 

that there exist  critical numbers    t       and    u    ,z=0,l,2,...   ,  such that 
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t     < u      where    z    is the initial quantity of equipment in use. 
Z   "       z 

Following the method of  Section 2.2  the one period functional equation is 

CAx  ,   z)  » min  {a(y - x) + cy + L  (y)} (5.1) 
X y "^ Z Z 

for x > z > 0 . The only assumptions made are that k>0,d<0,c>0, 

k + c > 0 and L (y) > 0 .  Consequently, the minimum in (5.1) exists. 

Define two sequences of real numbers {t } and {u},z=0,l,2,... z z 

by 

k(t - x) + ct + L (t ) = min{k(y - x) + cy + L (y)}       (5.2) 
z z   z  z z y>Z 

d(u - x) + cu + L (u ) = inf{d(y - x) + cy + L (y)} .     (5.3) 
z z    z  z z 

y>z 

The reasons for the usage of the minimum and the infimum are similar to the 

reasons for their use in the multi-period model in Section 3.2. For convenience 

assume that t  and u  are uniquely defined.  If not some ancillary rule may 

be used for choosing one unique value, for each z . One such rule, for example, is 

t =  min {t (i)} 
l<i<I - - z 

u =  min {u ^h 
Z  l<j<J   Z 

-J- z 

where  (t (1) : 1 = 1,2,...,!} and {u (:5) : j « 1 , 2 , ... , J } are, 
z z z z 

for each z , all values which satisfy (5.2) and (5.3), respectively.  Both 

critical numbers exist for each z but t < ^ while u  may be infinite since z z 

k > 0 and d < 0 . In the follwoing theorem we show that t < u . — — z ~  z 
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Theorem 5.1 

If    L  (y)   >  0  , k > 0  ,  and    d  < 0    then    t    < u     . 

Proof:     It  can be assumed that    u      is finite otherwise the theorem obviously 
z J 

is true.  In this case the greatest lower bound in (5.3) is attined and inf may 

be replaced by min . Define y  by 

cy* + L (y*) = min [cy + L (y)] . (5.A) 
z   zz z 

y>z 

The proof proceeds in two parts.  First it is shown that t < y  and then it is 

shown that y* < u ; the theorem then follows. 

•k it 
(i)  Proof that t < y .  For all y > y 

k(y - x) + cy + L (y) > k(y* - x) + cy* + L (y*) (5.5) 
z    v    z z    z  z 

because k > 0 .  Comparison of (5.5) with (5.2) gives that t < y* • That is, if 
* Z    —        Z 

t    > y*    then by   (5.5) 
^ Z 

k(t    - x) + ct    + L  (t  )   > k(y* - x) + cy* + L  (y*) 
z z        z    z    -      }z Jz        z Jz 

and by  (5.2)   the opposite inequality holds so that 

k(t    - x) + ct, + L  (t  )   = k(y* - x) + cy* + L  (y*)   . 
z z zz z z zz 

But    t    > y*     so  that if    k ^ 0 
z      -^z 

ct    + L  (t )   < cy* + L  (y*) 
z        z    z Jz        z Jz 

contradicting the definition of    y*  .     If    k ■ 0    then from  (5.2)  and   (5.4) 

t    = y*  ,   a contradiction, 
z      Jz 
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(il)    Proof that    y    < u    .    For all    y < y z -    z 

d(y* - x) + cy* + L (y*)   < d(y - x) + cy + L  (y) (5.6) 
Z Z Z       Z       *" z 

because    d < 0  .    Comparing (5.6) with (5.3)  implies that    y    < u    .    That is,  if 

u    < y      then by (5.6) 

d(y* - x) + cy* + L (y*)  < d(u, - x) + cu   + L  (u^)   . z z        zz- z z        zz 

Equation (5.3)  implies the opposite inequality so that 

d(y* - x) + cy* + L (y*)  - d(u, - x) + cu, + L  (u )   . z zzz z zzz 

But    u    < y*    so that if    d i' 0 z      Jz 

cy! + L,(y!) > cu   + L (u ) z        zz z        zz 

■ff 
contradicting the definition of    y    .    If    d » 0    then from (5.3)  and (5.A) 

u    ■ y*    furnishing the desired contradicition.    This completes the proof. 

5.3    Solution of the One Period Model 

The solution of the one period model is derived in this  section.    At the 

beginning of a period for each value of    z    there are three possible situations. 

The initial number of rented units    x    is larger than   u    ,  less than   t    , or 
2 2 

in between t  and u . In what follows all critical numbers are assumed 
z      z 

positive and finite. When u  is allowed to be infinite or t  is zero the re- 
^ z z 

quired modifications will become clear. 

Case (1): x > u . Let 

h
v(y t z) =» a(y - x) + cy + L (y) . 
A 2 



67 

Then 

C. (x , z) = min {h (y , z)} . 
y>z 

Fix x > u  .  When y < x 
z        ' 

h (y , z) = d(y - x) + cy + L (y) 
x s 

and when y > x 

h (y , z) = k(y - x) + cy + L (y) > d(y - x) + cy + L (y) 
X z    ^ z 

Thus 

min (h (y , z) } = min {d(y - x) + cy + L (y)} 
z'y<x z<y<x 

and since x > u  the minimum occurs at y = u  by the definition of u  . Also 
z ] z       J z 

min {h (y , z)} = min {k(y - x) + cy + L (y'»} 
y>x y>x 

> min {d(y - x) + cy + L (y)} 
y>x 

> d(u - x) + cu + L (u ) -   z        z   z z 

again by the definition of u .  Thus we have z 

min {h (y , z)} = h (u , z) . 
X X  z 

y>z 

The optimal policy is, whenever x > u  set y ■ u . We note that if u ■ » 
Z £ £* 

then this case cannot occur. This case is illustrated in Figure 5.1. 
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k(y - x) + cy + L (y) 

The Cost Function when x > u 
z 

Figure 5.1 

Case (2); x < t . For a fixed x < t  we have when y < x 

h (y , z) - d(y - x) + - • + l,,(y) > k(y - x) + cy + L (y) 

and when y > x 

h (y , z) = k(y - x) 4 cy + L (y) . 
X Z 

Using the same method as In case (1) and the definition of t  implies 
Z 

C1(x , z) - min {hx(y , z)} » hx(tz , z) . 
y>Z 

Thus the optimal policy is to set y = t  whenever x < t  . We note that this 
z z 

case cannot occur if t » 0 . This case is illustrated in Figure 5.2. 
z 
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k(y - x) + cy + L (y) 
JE» 

~ y      , d(y - x) + cy + L (y) 

v.  ^ 

-H r- 
t  u z  z 

The Cost Function when x < t z 

Figure 5.2 

Case   (3);     t    < x <  u     .     This case  is a  little different.    A typical  example 

of    h  (y  ,   z)     is  shown  in Figure 5.3. 

k(y - x) + cy + L (y) 
2 

d(y - x) + cy + L (y) 
I z 

Note that 

The Cost Function when t  < x < u . 
z -  - z 

Figure 5.3 

h (y , z) ■ max{k(y - x) + cy + L (y) ; d(y - x) + cy + L (y)} . 

If h (y , z) is discrete convex then from Figure 5.3 the optimal policy clearly 

is to set y = x . But when h (y , z)  is not discrete convex its minimum does 

not necessarily occur at x . Let v (x) represent the value of y which min- 
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imizes h (y , z) . Then the optimal policy is y ■ v (x) .  It is evident that 

v (x) exists for each z and x .  If we define T ^  by z z 

k(T W - x) + cT a)) + L (T^) - c + L (x) z z       zz     xz 

and 

T (j) > x 
z 

then T J,j»l,2,... ,r, are all of the y values larger than x for 
Z 

which k(y - x) + cy + L (y) = ex + L (x) . By assumption 1 < r < <» . Let 
Z Z "" 

T - max  {T (:J)} . 
2   - .      Z l<j<r 

In the same manner define U ■'   and U  by z z      J 

W  - x) + CU "> + L (U 
(V d(U VJ/ - x) + cU VJ/ + L (U VJ/) » ex + L (x) z z      z z z 

and 

< U ^ < x z<U J<x       j«l,2,...,s<00 

U - min  {U (J)} . 
Z  l<J.<s  Z 

That is U ^,j»lf2,... ,8, are all of the y values less than x 

for which d(y - x) + cy + L (y) ■ ex + L (x) , and U  is the smallest of these z z z 

values. 

Then v (x) may be redefined by 
Z 

h (v (x) , z) =  min  (h (y , z)} . 
X Z u <y<T   X 
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5.4 The Optimal Policy and Some Variations 

In this section we summarize the optimal policy obtained above. Then we 

discuss variations of this policy which occur when various assumptions are made 

about the one period expected holding and shortage cost function, L (y) . The 

assumptions considered are:  (1) L (y) is discrete convex, (2) L (y)  is not 

discrete convex, (3) L (y) is independent of z , i.e., L (y) = L(y) , and (4) 
Z £ 

L   (y)     is a function of     z  .     Suppose    L  (y)     is not discrete convex and  it is a 

function of    z  .     If the number of units of equipment being rented at the beginning 

of a period is    x    and if the number ^f units  in use at the beginning of the period 

is    z  < x then the optimal policy is, whenever    0 < t    < u    < »  f 

(1) if    x > u      then    y = u     , z J z 

(2) if     t    < x < u      then    y » v (x)   , z -      -    z J z 

(3) if    x < t      then   y =  t     . 
z z 

If    h (y ,  z)  - h  (v  (x)   ,  z)  > 0    is small for all    y    in the interval 
X X       Z Ä 

[U , T ] then there is a simpler policy which is nearly optimal: 
Z      Z 

(1) if x > u  then y = u  , z      J        z 

(2) if  t < x < u  then y = x , 
Z ~    *   Z 

(3) if x < t  then y • t  . z      J z 

If h (y , z) is a fairly smooth function this policy will give approximately 

the least cost. If h (y , z) is discrete convex in y > z then this policy 

is the exact optimal policy. A sufficient condition for h (y , z) to be discrete 

convex is that L (y)  is discrete convex in y > z for each z . 
Z * 

If    t      is allowed to assume the value    0    and    u      is permitted to take the z z 

values    0    or    «>    then the modification of  tha optimal policy clearly is analogous 
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with the results of Section 2.3. 

The optimal policy obtained in this chapter should simplify to the optimal 

policy of Chapter 2 when L (y)  is assumed to be independent of z (i.e., 

L (y) = L(y))  and discrete convex. That this is the case is now shown. 

Assume L (y)  is independent of z and discrete convex.  Then 

min {k(y - x) + cy + L(y)} = k[max(t , z) - x] + c.max(t , z) 
y>z 

+ L(max(t , z)) 

inf {d(y - x) + cy + L(y)} - d[max(u , z) - x] + c-maxCu , z) 
y>z 

+ L(max(u , z)) 

vhere t and u are defined by 

k(t - x) + ct + L(t) = min {k(y - x) + cy + L(y)} 
y>0 

d(u - x) + cu + L(u) = inf {d(y - x) + cy + L(y) } . 
y>0 

Consequently from (5.2) and (5.3) we have 

t = max (t , z) 
z 

u -  max (u , z) . 
z 

The definitions of  t and u given above are identical with the definitions 

given in Section 2.2. Because L(y)  is discrete convex the approximate optimal 

policy given in this section is the exact optimal policy: 

(1) if x > u  then y = max(u , z) , 

(2) if t  < x < u  then y = x , 

(3) if x < t  then y = max(t , z) . 



73 

This optimal policy can be simplified to the optimal policy of Section 2.4 by 

utilizing the following three theorems: 

Theorem 5.2 

x < t = max(t , z)  if and only if x < t . 

Theorem 5.3 

x > u = max(u , z)  if and only if x > u . 

Theorem 5.A 

t = max(t , z) < x < u = max(u , z)  if and only if t < x < u . 
z ■•     z 

Proof of Theorem 5.2:  If x < t  then z < x < t ■ max(t , z) and we must 
z        -     z 

have t > z (otherwise z < z) therefore max(t , z) « t . Conversely, if x < t 

then x < t < max(t , z) * t 
- z 

Proof of Theorem 5.3:  Suppose x > u  . Then x > max(u , z) > u .  Con- 
- z - - 

versely, if x > u then x > max(u , z) . 

Proof of Theorem 5.A:  If t = max(t , z) < x < u » max(u , z)  then x > t . 
z -     z 

Now is z > u then x < u < z , a contradiction. Conversely, if t < x < u 
z — — 

then x > max(t , z) = t  and x < u * max(u , z) because z < x < u . 

Finally, we consider the special case when L (y)  is independent of z but 
z 

not necessarily discrete convex. As an example, this case can arise when the 

stochastic behavior of the inventory system is described by the stationary 

p. d. f. TT(k , y) with X/y > 1 or when the holding and shortage costs may not 

be linear functions of the amount of equipment in the pool or the number of lost 

customers.  The optimal policy under this assumption is 
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(1) if x > u then y = u  , J z 

(2) If  t < x < u  then y = v (x) , 
-  - z z 

(3) If x < t then y = t , 

where t  and u  are defined in (2.4) and (5.3) and v (x)  is defined by 
z z 

a(v (x) - x) + c«v (x) + L(v (x)) = min {a(y - x) + cy + L(y)} , 
z z       z 

y>z 

for  t < x < u 
- z 

5.5 The Multi-Period Model 

The extension of the optimal policy of the one period model to multi-period 

models is discussed in this section.  The demands for equipment occur according 

to an arbitrary distribution and the usage times follow independent arbitrary 

distributions.  Let T be the length of the period under consideration so that 

p , (T,y)  represents the probability of k units being in use at the end of the 

period given z were in use at the beginning of the period and y units of 

equipment were rented during the period.  By now it is clear that the N period 

functional equations are 

C (x,z) = min {a(y - x) + cy + L (y) + a J C  1(y,j)p, .(T,y)}   (5.7) 
y>z j=0 n       ^ 

for n = 1, 2 N with C_(x,z) ■ 0 and 0 < a < 1 .  Define two sequences 

of real numbers  {t (z)}  and  {u (z)} , z = 0, 1, 2 by 

k(t (z) - x) + ct (z) + L (t (z)) + otM .(t (z),z) 
n n     z z       n-1 n 

= min {k(y - x) + cy + L (y) + aM  (y,z)}    (5.8) 
y>z 
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d(u (z) - x) + cu (z) + L (u (z)) + otM . (u (z) , z) 
n n     z n       n-i n 

inf {d(y - x) + cy + Lz(y) + oiMn_1(y , z)} , 
y>z 

(5.9) 

where 

M (y . z) - Z C (y , j)p    (T , y) . 
n        j=0 n      z , j 

The reasons for the usage of the minimum and the infimum are similar to the reasons 
« 

for their use in the multi-period model in Section 3.2. Assume t (z) and u (z) r n        n 

are unique for convenience. If they are not an auxiliary rule may be used to 

choose unique values, as in Section 5.2. 

Theorem 5.5 

If L (y) > 0 , k > 0 , and d < 0 then t (z) < u (z) . z J     - - - n   - n 

Proof: The proof is identical with the proof of Theorem 5.1 if L (y)  is 

replaced by L (y , z) « L (y) + otM . (y , z) . 

To derive the optimal policy we follow the method of Section 5.3 replacing 

L (y) by L (y , z) , which is defined in the proof of the above theorem. Hence, 

the optimal policy is 

(1) if x > u (z)  then y « u (z) , 
n n 

(2) if  t (z) < x < u (z)  then y ■ v (x , z) f n   -  — n n 

(3) if x < t (z)  then y « t (z) , 
n n 

where v (x , z)  is defined by 
n 

h (v (x , z) , z , n) «    min     (h (y , z , n}} 
X n U (z)<y<T (z) X 

n -J~  n 
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where 

h (y , z , n) = a(y - x) + cy + L (y) + aM ,(y , z) 
X Z Tl 1. 

U (z) = min {U (j)(z)} 
n      .   n 

j 

T (z) = max {T (j)(z)} 
n     .   n 

J 

hv(x , z , n) = hv(T 
(j)(z) . z , n) = hv(U 

(j)(z) , z , n) 
A x  n A  ri 

T (:i)(z) > x U (j)(z) < x . 
n 

This optimal policy may be simplified by putting v (x , z) = x . When 

h (y , z , n)  is discrete convex in y then doing this gives the exact optimal 
X 

policy.  Whereas if h (y , z , n)  is not discrete convex but yet fairly regular 
X 

then a policy is obtained which approximately  is optimal.    Finally,   if    h   (y  ,  z  ,  n) 

is not  discrete convex and does not depend on    z    the optimal policy for each 

period of  the multi-period model has the  same  form as the optimal pclicy of  a 

single period model   (see the discussion at  the end  of Section 5.4). 

5.6    The Infinite Period Model 

In this  section we consider the infinite period model and  show that  Its 

solution  is,   in a sense,  an approximation to  the  solution of a multi-period model 

The functional equation is 

y 
C(x   ,   z)   = min  {a(y - x)  + cy + L   (y)  + a  Z C(y  ,   j)p (T   ,  y)} 

y>z j=0 Z   '   J 

(5.10) 
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where 0 < a < 1 .  When examining the proofs of Theorems 4.1. 4.2, and 4.3 it 

will be noticed that in no case was discrete convexity needed except in the last 

part of Theorem 4.1 when proving the discrete convexity of C*(x , z) .  With 

this one exception noted, all the remaining parts of these theorems are true for 

our generalized model. The n period minimum expected cost function C (x , z) 

converges monotonically and uniformly, as n -> ^ , to a limit which is the unique 

solution of (5.10) (among the class of solutions bounded in finite intervals) . 

Define two sequences of real numbers {too(z)} and  {uoo(z)} , z = 0 , 1 , 2 , 

... , by (5.8) and (5.9) with n = 00 .  As in Section 5.5 we may assume they are 

unique.  Using the proof of Theorem 5.5 we see that t (z) < u (z) . The optimal 

policy is identical with that given in Section 5.5 when n = ^ . 

5.7 limiting Behavior of the Critical Numbers 

The limiting behavior of the critical numbers t (z) , u (z) , and v (x , z) & n      n   '      n 

is discussed in this section.  In certain cases it will be shown that the sequences 

of critical numbers contain convergent subsequences. 

Since t (z) and v (x , z) are always finite for all n , for each z , and 
n n 

for each x in  [U (z) , T (z)] , the sequences  (t (z)}  and {v (x , z)} con- 
n     n n n 

tain convergent subsequences for each z . If u (z)  is finite for all n and 

for each z  then the sequence  (u (z)}  contains at least one convergent subse- 

quence.  In a manner similar to the proof used in Theorem 4.5 and Theorem 4.6 we 

can show that limit points of the above sequences are solutions to the infinite 

period model cost equations. 

Theorem 5.6 

If u (z)  is finite for all n and for each value of z then convergent 

subsequences of  {t (z)} ,  {u (z)} , and {v (:: , z)} exist for each z and 
n        n n 
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every limit point of  the  sequence minimizes the  corresponding Infinite period 

cost  equation. 

Proof:    The existence of the convergent subsequences follows immediately 

from the boundedness of  the  sequences.     Following the proof of Theorem 4.5 we find 

f (t (z) , z , n) < f (y , z , «) 

gx(un(z) , z , n) < gx(y , z , oo) 

hx(vn(x  ,   z)   ,  z  ,  n)   < hx(y  ,   z   ,  ») 

for    y > z  , where 

f  (y  ,   z  ,  n)  = k(y - x) + cy + L   (y) + aM, (y) 
X Z 11^ X. 

g   (y   ,   z   ,   n)  = d(y - x)  + cy + L   (y) + aM    . (y)   . 
x z n^ 1. 

Thus any limit point of  the  sequence    {t   (z)} minimizes    f   (y   ,   z   ,  a»)   ;  any 
Tl X 

limit point of  the  sequence    {u  (z)}    minimizes    g  (y  ,  z   ,  o")   ;  any  limit point 

of  the sequence    {v (x  ,   z)}    minimizes    h (y   ,   z  , «O   ; proving the  theorem. 

Naturally if all of  these minima are unique  then the sequences of critical 

numbers all converge:     t   (z) •*■ t  (z)   ,  u  (z)  -*■ u  (z)   ,  and    v  (x  ,   z)  -*■ v (x  ,  z) 

as    n -*■ "o  . 

5.8    L  (y):    A Non-Stationary Approximation 

The one period expected holding and  shortage cost    L  (y)     is calculated  in 
Z 

this  section using the transition probabilities    p (t   ,  y)    and assuming 
Z    •    K 

Polsson demands and negative exponential usage times. Then an approximation 

to p   , (t , y) which Is better than the stationary approximation of Section 
Z « K 

2.5 is discussed.  It is shown that under certain conditions use of this approx- 

imation in place of p   , (t , y)  leads to a discrete convex L. (y) . The 
Z  y  K. Z 
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holding cost is considered first then the shortage cost. 

Following the method in Section 2.5 the holding cost can be calculated fron 

(2.9) if p   , (t , y)  is substituted for TT(k , y) .  The holding cost is 

T y 
h' / Z (y - k)p    (t , y)dt . (5.11) 

0 k=0      Z ' 

This  simplifies to 

1    T 

h[y - ^    /    A   (t   ,   y)dt] (5.12) 
1    0      z 

where 

y 
A (t  , y)  =    Z kp (t  ,  y) 

2 k=0 '  K 

represents  the expected number of units of equipment  in use at  time    t     if     z 

are  in use  at  time    0    and    y    units are rented during  the period. 

In order  to calculate  the holding cost    A  (t   ,  y) is calculated  first.     A 

Poisson arrival,  negative exponential usage,  y    channel queueing system with no 

queue permitted satisfies  the  following system of birth death differential  e- 

quations. 

p;.o(t) = -xP2.o(t) + upz.i(t) 

^.j^-^.j-l^-^ + ^z.^ 

+ y(j + l)p2jj+1(t)  1 < j < y - 1 (5.13) 

P;.y(t) = Xpz.y-l(t) " ^Z.y
(t) 

where p  (t) represents the probability that j channels are occupied at time z, j 
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t if z are at time 0 and A and y are the parameters of the Poisson and 

negative exponential distributions, respectively.  For convenience, the dependence 

of thp transition probabilities on y will be suppressed when no confusion is 

likely to arise, i.e., p  (t) = p , (t , y) . Also, the prime notation represents 
Z , j        Z , K 

diff  '.*-.' nion  with respect to t .  Multiplying the jth equation by j  and 

summing gives 

A'(t , y) + yA (t , y) = X[l = p,  (t)] . (5.14) 

Equation  (5.14)   is  a linear differential  equation of the  first  order and can be 

solved by making the substitution    A (t   ,  y) = u(t)'v(t)   .    Thus 
Z 

A  (t   ,  y) = - -  \e~Vtfp       (t)eUtdt + ce~Vt 

z y z»y 

where    c    is a constant of integration.     Clearly this  solution satisfies   (5.14). 

To evaluate    c    we note that    A  (0  ,  y)   » z  ,    Therefore 

c-z-i+X[/P3.y(t)e,Itdtlt.O 

so that 

A  (t   , y) - ^(1 - e-yt) + ze"^ - Xe'^ifp      (t)elJtdt z y z,y 

(5.15) 

"  t/Pz,y(t)eytdt]t=0}   . 

Riordan [11], page 85, gives the following expression for p  (t) , 
z,y 

/ ^   ^     y     D (r, (y))     r, (y)yt 
P  (O « #4 + (A)y-Z l    Z-±1  e k (5.16) 
Z,y     P(y;   y    k-1 rk(y)D^(rk(y) + 1) 

where p(y)  and P(y) are as defined previously, and rv(y) . k » 1 , 2 , ... , 

y , are the y eigenvalues of the matrix of the coefficients of the system of 
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birth death equations  (5.13)   (their dependence on    y   ,  the order of  the matrix, 

is explicitly noted).    The polynomials    D  (s)     are  a sequence of Sturm functions 

defined by 

n \      u 
D  (s)  =     E   (?)   (-)       s(s +1)   ...   (s + k - 1) (5.17) 

k=0 k      y 

where  s(s + 1) ... (s + k - 1) = 0 for k = 0 .  The prime on D in the 

denominator indicates the derivative with respect to s . It can be shown that 

the y eigenvalues r. (y) are all distinct, real, negative, and that they are 

they y roots of D (s + 1) = 0 . Let 

rk(y)Dy(rk(y) + l) 

then  (5.16) becomes 

Y r.(y)vt 
P (t)  = TT(y   ,  y) + ihy'Z  I av(y  ,   z)e k . (5.18) z,k *   *  J v        . _,  k k=l 

Using   (5.18)  in (5.15)  gives 

A2(t  ,  y)  - ^(1 - e-"1) + ze-Vt -   UMf^} (1 - e-Vt) 

X   i   \(v •Z)  . ^^      -Ut, ., ... - -    I   -....,   (e - e      )   . (5.19) 
y k-1 rk(y) + 1 

As a check on the correctness of (5.19) if we let  t ■♦ » in A (t , y) we should 

obtain the steady state value given in (2.16).  Since all the eigenvalues ^(y) 

are negative letting t approach infinity yields 

Az(t , y) - (X/y) - a/u)^} = {\lvP~1  ' 
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Comparing (5.12) with (2.16) shows that in steady state A (t , y) does reduce 
z 

to the value given in (2.16).  Rewriting (5.19) and using the definition of 

ak(y , z) , 

Az(t . y) = (X/u)^—^ (1 - e-yt) + ze"^ 

X v y Dz(rk(y)) r (y)ut - (V I     *—£  (e k     - e yt) . 
y  k-1 r (y)[r (y) + llD'(r.(y) + 1) 

K    K       y R (5.20) 

A simplified approximation of    A  (y  ,   t)  can be obtained by neglecting all  the 

exponential  terms in  (5.20) which have eigenvalues  in the exponent except  the one 

which has  the  largest negative eigenvalue.    Let 

r(y)  »    max  ^(y)} 
l<k<y 

then (5.20) reduces to 

Az(t , y) « (X/u)^;-^   (1 - e-yt) + ze-yt 

. fry D
2
(r(y)) (er(y)ut . e-yt) 

y r(y)[r(y) + l]D'(r(y) + 1) (5>21) 

where   «    denotes approximate equality.    The objective  in calculating    A  (y   ,  t) 

is to determine whether or not  the expected holding cost   (5.12)  is discrete con- 

vex in    y  .     If   (5.21)  is used  in  (5.12)  to give an approximate expression for 

the expected holding cost it will be very difficult  to determine the first and 

second differences of    A  (t  ,  y)     with respect  to    y    because    r    depends on    y  . 

That  is,   the relationship between the  largest eigenvalue of a matrix and  the 

order of  the matrix must be known.     We circumvent  this difficulty by making a- 

nother approximation.    Riordan   [11],   pages 86-7,   shows  that  as    (X/u)  ■* 0 
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r(y)  -* -1  .    Thus assuming     (X/y)     is small  and approximating    r(y)     by    -1 

gives an expression even simpler than  (5.21), 

Az(t  ,  y) « a/ri^ffy1   (1 - e  "^ + ze"Vt  . (5.22) 

Consequently, an approximate expression for the expected holding cost can be ob- 

tained by substituting (5.22) into (5.12). Doing this gives, 

h[y - (X/u)
1^-^ - ^ (1 - e-Vt)(z -  (X/U)f^)l •       (5.23) 

The first two terms withing the bracket are the stationary component of the ex- 

pected holding cost and by Theorem 2.3 we know that they are discrete convex if 

2 
0 < (X/y) < 1 . Concentrating on the last term, if A [p(y)/P(y)] > 0 then the 

expected holding cost is discrete convex. 

Theorem 5.7 

For small (X/y)  A2[p(y)/P(y)] > 0 . 

2 
Proof:    The numerator    of    A [p(y)/P(y))l     is 

p(y + 2)[P(y)]2 - 2p(y + l)[P(y)l2 - 2[p(y + l)]2P(y) 

- p(y + l)p(y + 2)P(y) + p(y)tP(y)l2 + 2p(y)p(y + l)P(y) 

+ P(y)p(y + 2)P(y) + p(y)[p(y + 1)12 + p(y)p(y + l)p(y + 2) 

>  lP(y)l2lp(y + 2) + p(y)  - 2plky + 1)] 

but the terms in the second bracket are nonnegative for small (X/y)  for all 

y > 0 . The proof of the theorem is complete. 

We have shown up to this point that for small values of (X/y) the approx- 

imate expression (5.23) for the expected holding cost is discrete convex. The 

next term to be determined is the expected shortage cost. As in Section 2.5 it 
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will be s  times the expected number of lost customers M(t)  in some time in- 

terval t .  The symbol M will have this meaning in this section only.  In 

pervious sections it was used for something else.  It is used in this section for 

the expected number of lost customers because it will subsequently be identified 

as the renewal function which is denoted in the literature by M(t) .  First we 

calculate M(t) . 

Let G(t)  be the distribution function of the time between successive lost 

customers and let N(t) be the number of lost customers in  (0 , t) . Clearly 

the successive lost customers forms a renewal process so that 

P[N(t) = n] = G(n)(t) - G(n+1)(t) 

where G  (t)  represents the n  fold convolution of the distribution G(t) 

with itself.  Also, 

oo 

M(t) = E[N(t)] = I  G(j)(t) 
j = l 

where E denotes expectation. Denoting Laplace-Stieltjes transforms by * we 

have 

MMs) _^lsl 
1 - G*(s) 

where 

M*(s) = / e"StdM(t) 

G*(s) = / e~StäGit)   . 
0 

Takäcs [12], page 185, calculates an explicit expression for M*(s)  assuming the 

input process is a recurrent process and the holding times are negative exponential. 
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We could follow his method but since his expression for M*(s)  is very complex 

from a computational point of view another, and simpler, method is used.  Divide 

a time interval  (0 , T)  into n small equal subintervals of length  6t .  That 

is,  6t = T/n . In order to have a lost customer during one of these intervals 

of length 6t all of the equipment must be in use at the beginning of the in- 

terval and a demand must occur, together with no completions of service.  Thus, 

_,,! lost customer  ,      ,    wfrwi   tr^y ,  /r^N 
P[  in (t , t + 6t)] =Pz,y(t ' yn   6t(1 " U 6t) + o(6t) 

where  (t , t + 6t)  is the interval under consideration, X' = X/T , and 

2 
U1 = u/T . The symbol o(6t)  represents terms of order (6t)  or higher. 

2 
Mathematically, terms are of order (6t)  or higher if and only if 

lim  Y ' i   =  0 
6t-0  6t 

or equivalently 

o(6t) < c6t 

fo  t > 0 and arbitrary and  6t small.  Consequently, 

...n lost customers,      .    v/>iifc\n,/1   »t^\y ,  r^x^x11! 
Plin (t . t + at) ]   =  Pz,y(t ' >)(X 6t) (1 " lJ 6t)  + 0[(6t) ] * 

Hence the expected number of lost customers in  (t , t + 6t)  is, for small 6t , 

oo 

I    n(P   (t , y)(X'6t) (1 - y'6t)^ + o[(6t ]) 
n=0   Z'y 

which reduces to 

p  (t , y)(X'6t) + Z  no[(6t)nl . 
Z'y n=0 
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However this equals 

p  (t , y)(X'6t) + o(6t) 
z»y 

because 

CO 00 

E no[(6t)n] < el  n(6t)n = E  ——r = e'Öt 
n=0 n=0         (1 - 6t) 

where  e > 0 is arbitrary and  6t is sufficiently small. The expected number of 

lost customers in (0 , T) is by definition M(T)  and is equal to 

M(T) = lim       L     [p^ w(t , y)(X'6t) + o(6t)] . 
all intt 
vals 6t 

6t^0  all inter-  z'y 

Since p   (t , y)  is continuous in t it is Riemann integrable, thus 

M(T) - X' / p   (t , y)dt (5.2A) 
0 z,y 

because 

Um E o(6t) < lim I  e6t = eT = E ' 
6t->0 6t->0 

where  E > 0 is arbitrary so that e' > 0 is arbitrary. Note that the e and 

E'  used here are not related to those used previously. 

The shortage cost can be calculated now as  S'M(T) or, indicating the de- 

pendence on z and y explicitly, as s-M (T , y) .  The p. d. f. p   (t , y) 
z 2 ,y 

is <?iven by  (5.16).     Again note  that  if the  first  and  second differences  of 

.•    i   ,   y)     with respect  to    y    are taken that the dependence of  the eigenvalues 

on    y    creates very complex computational di  i.iculties.    Thus we V/*ll approximate 
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P-  (t , y) by 
^»y 

i \                               D (r(y))     , N 
(t  v) « £(ll + (x/u)

y"Z 2      er(y)ut 
PZ,y
U ' y^ H9) + U/U;   r(y)D;(r(y) T 1) 

where, as before,  r(y)  is the largest negative eigenvalue  As  (X/v) ^ 0 we 

know that r(y) -»■ -1 , thus, we make the simpler approximation, 

/  x D   (-1) 
Pz,yU   '   y)       P(y)        (A/y) D'(0)  e 

By  (5.17) 

D   (-1)   =   (^)z-1(^-  z) 
z u u 

D. (0) . y ^ iAMi -JL^ 
y        j.o   J!   y - ^ 

so that 

Pz v(t   '  y) " H^ - ^'v1^2'  (X/V))  e-yt (5.25) z'y P(y) Y  _EÜ1 
j=o   y-^ 

if    y > 1    and    p       (t  ,  y) = 1    if    y = 0    since    z < y    for small values of z, y - 

(X/u) . Using (5.24) the expected shortage cost becomes 

T 
sX' / p  (t , y)dt 

0 2'y 

which is, when substituting (5.25), for y > 1 , 

(z - -)sX' 

S P(y) +  y-1 ,..   l    y   1(1  e  > ' 
y I  -^H 

j=0 y " ^ 
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In order to show that the expected shortage cost is discrete convex for y > 1 

and small  (X/u)  it suffices to show that 

A2[ ?<? - ^ ] > o 
yzl pd) - 
j=0 y     -1 

for z > (X/y) because by Theorem 5.7 p(y)/P(y)  is discrete convex. 

Theorem 5.8 

For small     (X/y)   A2[ ^ "      ]   > 0    for    1  < y < X  , where    X    is as de- 

j-0 y     } 

fined  in the proof of Theorem 4.1. 

Proof:    Let 

f(y) -z^j-ll 

g(y) - ^\-^L 

j.oy i 

then using the standard formula for the difference of the quotient of two func- 

tions gives, 

L
y ^  .JLÜi     g(y)J 

- {g(y)g(y + DlgCy + l)A2f(y) - f(y + l)A2g(y)] 

- [g(y)Af(y) - f(y)Ag(y)Hg(y + l)Ag(y + 1) 

+ g(y + l)Ag(y)l}/{g(y)[g(y+ l)]2g(y + 2)} 

2 2 
for y > 1 .  But  Af(y) < 0 , A f(y) > 0 , Ag(y) < 0 , and A g(y) > 0 for 
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1  < y < X    and  small     (X/y)   •     Consequently it is sufficient  to show that 

g(y + l)A2f(y)  -  f(y + l)A2g(y)   > 0 (5.26) 

g(y)Af(y)  - f(y)Ag(y)   >  0 • (5.27) 

Starting with (5.26) after some elementary computation it is equal to 

.    y-1 -2(X/y) -v   o ^ o(\ /.^Z2(X?v) 

+ WvrY_2[XM 0(i)(y2 + o. 2(i)y + 2 + (y. «i, 
.   .  Ny -2(X/y) 

(y + 2)!y(y +  1)   0V   * 

X v-1 
The first and third terms are of the order (—r   but the second and fourth are 

y 

of the order     (—)       therfore  for  sufficiently small     (X/y)     the expression  (5.26) 

is nonnegative. 

Similarly for  (5.27) we obtain an expression,   for  small     (X/y)   , 

Vy - Dl ,Y 7 K o(^)] 
y y(y +1)      v 

which is nonnegative. The proof of the theorem is complete. 

The theorem implies that the one period expected shortage cost is discrete 

convex for y  in  [1 , X] .  Examining the special case at y » 0 will show that 

the second difference is nonnegative also. 

In summary, it has been shown that the one period expected holding and shortage 

cost 

T y T 
L (y) = h' / I (y - k)p, . (t ,y)dt + sX» / p  (t , y)dt 
Z       0 k=0       Z'K 0 Z'y 

is discrete convex in    y    for each    z  > 1    when    p       (t   ,   y)     is approximated by  (5.25) 

and     (X/y)     is  small. 
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6.     Extensions 

6.1 Introduction 

Two important extensions or variations of the inventory model for rented e- 

quipment are considered in this Chapter.  In a one or multi-period model the ques- 

tion of what happens to the rented equipment at the end of the last period is ex- 

amined more closely.  The constant  d  representing the return cost was restricted 

uo nonpositive values in Chapters 1 through 5.  Now we examine the case where d 

can be positive. 

6.2 The Equipment in Use at the End of a Period 

Focus attention on a one period problem or on the last period of a multi- 

period problem.  The models considered in the previous chapters implicitly assume 

that at the end of the period all of the rented equipment is returned; the cost of 

returning each unit being the same.  The cost of returning the equipment at the end 

of the period is a component of the rental cost c .  In reality this may or may 

not be the case.  It is possible that a rental agreement may specify that at the 

end of the period the equipment not in use is returned immediately but the equip- 

ment in use can be returned as they finish their work in the field at no extra 

cost.  The rental cost c would be increased, most likely, to allow for such a 

situation. Another possibility is that an extra cost is incurred at the end of the 

period for all equipment still in use.  The equipment in u^ may have to be rented 

for another period or maybe just as long as it Is tu use.  As an example, if this 

cost is proportional to the number in use and if the stochastic behavior of the in- 

ventory system is described approximately by the staionary transition probabilities 

then it is 
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r    I   k£M= -A) Ui - i) 
k=o    p(y)        y     p(y) 

where    r     is  the constant  of  proportionality.    A  similar expression can be  derived 

is  the nonstationary transition probabilities are used.    Adding this  to   (2.2) 

gives  the  total expected cost  incurred during the period.    If the cost equation is 

discrete  convex then the  analysis of Chapter  2  is  applicable.     If  it  is not dis- 

crete  convex the analysis  of Chapter 5 applies.     It  is clear from  (2.16)   that  if 

r  < h    or    r = sX    then the  cost equation is discrete convex. 

6.3    An Inventory Model  for Owned Equipment 

If     0  < d  < k    then all  of  the results  in the previous chapters remain valid. 

The  only conclusions which do not extend to this  immediately are Iheorems  5.1 and 

5.5.     The  following theorem shows that Theorem 5.1   (and hence 5.5)   is  true  for 

0 < d   < k   . 

Theorem 6.1 

If    L  (y)  > 0  ,   for  each     z   ,  and    0 < d  <  k    then    t    < u     . 

Proof:    Assume  the  contrary  that    t    < u     .     By  the definition of     t J z -     z J 

Thus 

k(t    - x) + ct    + L   (t )   < k(u    - x)  + cu    + L  (u )   . z zzz-z zzz 

(k - d)(t    - x)  + d(t    - x) + ct    + L   (t  )  <   (k - d)(u    - x)  + 
z z zzz- z 

+ d(u    - x) + cu    + L   (u )   . 
z zzz 

Since k - d > 0 and t > u  it must be true that 
z   z 

d(t - x) + ct + L  (t )   <  d(u - x) + cu + L (u ) 
z        z   z z     z        z   z z 

contradicting the definition of u . The theorem is proven. 
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In addition if the rental cost  c  is zero then the rental inventory model 

can be given another interpretation.  All the equipment can be considered as 

owned rather than rented and at the beginning of each period additional units 

can be bought at a cost of k per unit or excess items can be disposed of for a 

revenue (e.g., salvage value) of  d  per unit.  In the light of this inter- 

pretation it makes sense that the gain from used equipment should be less, 

ordinarily, than the cost to buy new equipment (i.e.,  0 < d < k). 
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